。cc-by-nc 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2025年3月3日发布。 https://doi.org/10.1101/2025.02.27.640170 doi:biorxiv preprint
摘要:辅助载体是由许多生物合成的小型金属螯合剂来获取铁。这些次级代谢产物在地球上普遍存在,并且由于它们的产生代表了吸收铁的主要策略,因此它们在生物体之间的正相互作用和负面相互作用中起着重要作用。此外,在生物技术中使用铁载体用于医学,农业和环境中的各种应用。非天然的铁载体类似物的产生提供了一个新的机会,可以创建新的螯合生物分子,这些生物分子可以为扩展应用程序提供新的属性。本综述总结了用于生成铁载体类似物的组合生物合成的主要策略。我们首先提供了铁载体生物合成的简要概述,其次是对策略的描述,即前体指导的生物合成,合成或异源途径的设计以及用于辅助生物合成途径的合成或异源工程设计。此外,这篇评论强调了已用于通过细胞来改善铁载体生产的工程策略,以促进其下游利用。
作为阿尔茨海默氏症,帕金森氏症,亨廷顿和肌萎缩性侧面硬化症(ALS),带来了重大挑战,这在很大程度上是由于这些疾病的复杂性质,难以在血脑屏障(BBB(BBB)中提供治疗剂(BBB)的困难,以及在中心神经系统中的持续交付,以及CNS Cranis System(1)[1 CNS)[1 CN)[1 CN] [1 CN)[1 CN] [1 CN)[1 CN] [1)。基因疗法已成为这些疾病的潜在治疗策略,为靶向遗传水平的疾病根本原因的可能性[2]。已批准了各种递送系统和基因治疗携带者(图1)[3]。已经探索了病毒和非病毒载体,用于将治疗基因递送至中枢神经系统[4]。非病毒载体通常更安全且易于产生,但效率也较低[5]。病毒向量往往更有效地将基因传递到细胞中,但它们具有潜在的安全风险,尤其是在免疫反应和插入性方面
通过证明宏观导体可以表现出强大的D.C.量子元素的转运性能,整数量子大厅效应(IQHE)[1?–4]是一个重大惊喜。立即承认了这一分类对计量学的重要性[1],并导致了欧姆的重新编号[5?]。量子厅导体的有限频率响应已被计量师进行了深入研究:使用A.C.有限频率F的桥显示了与预期值r k / 2 = h / 2 e 2 [6-10]的仪器电阻r H(f)的出发。然后归因于“固有电感和电容” [11,12]。后来,Schurr等人提出了一个双屏蔽样品,允许使用频率独立的电阻标准[13],但是这些作品留下了这些电容和电感的起源问题。另一方面,量子相干导体的有限频率转运概述,其大小小于电子相干长度,预计将由量子效应支配。对于诸如碳纳米管[14]或石墨烯[15]等低维型电控器,电感纯粹是动力学的。小型超级传导电感器[16,17]现在用于太空工业[18]是基于库珀对的惯性。对于量子相干导体,B˝uttiker及其合作者[19-21]开发的理论将关联L/R或RC时间与Wigner-Smith的时间延迟有关,用于在导体跨导载器散射的情况下。在这封信中,我们在A.C.中证明了这一点。政权,这些显着的预测已通过量子hall r-c [22]和r-l [23,24]在高温温度下的GHz范围内的量子霍尔R-C [22]和R-L [23,24]电路的有限频率入学确定。
描述环蛋白最初被鉴定为鼠肿瘤细胞系NIH3T3/克隆T7的条件培养基中的生长抑制因子。它属于包括EGF,TGF-α,肝素结合EGF类似增长因子(HB-EGF),Epigen,Epigen,epiregulin,betacellullulin,neuroRegulin和pyororegulin的EGF家族。它与其他与EGF相关的生长因子的序列占24-50%的氨基酸序列同一性。所有EGF家族成员均被合成为I型膜蛋白前体,它们可以在质膜上进行蛋白水解裂解,以释放成熟的可溶性异构域。epiregulin充当人表皮角质形成细胞中的自分泌生长因子,可以由HB-EGF,Amphiregulin和TGF-α诱导。epiregulin由角质形成细胞和组织驻留巨噬细胞的免疫相关反应中表达,并发挥关键作用。已经表明,上环蛋白缺陷型(EP - / - )小鼠会出现慢性皮炎。此外,环保蛋白参与骨髓来源的巨噬细胞中促炎细胞因子的产生。此外,环保蛋白诱导人角膜上皮细胞的增殖,其表达可以通过TGF-α,HB-EGF,AR和EGF在这些细胞中诱导。epiregulin在中耳胆道瘤发病机理期间在高乳突发育中起作用,并且在银屑病表皮中过表达。上环蛋白多态性似乎与对TB的不同临床表型的敏感性有关,而环保蛋白则调节结核病的先天免疫反应。
蓝莓非常腐烂,真菌和细菌在所有供应链中都会影响它们的变质。目前尚无研究的姜黄素加载纳米泡(NBS)或姜黄素纳米晶体(NCS)的应用来保持其新鲜度。这项初步工作的目的是根据体外对蓝莓细菌微生物群的蛋白质效应来评估这两种纳米形象,并在培养皿中建立快速解答方案。在三种不同的光条件下(暗环境,蓝色LED和白色LED)测试了效果。的结果表明,在微生物与NBS接触和NCS接触后,照明步骤(蓝色LED或白色LED)的存在对于激活纳米结构并获得抑制halo的阳性答案至关重要。值得注意的是,与白色LED相比,蓝光显着增加了抗菌潜力。此外,突出显示了姜黄素浓度 - 依赖性效应(相对于25 µg/ml,50 µg/ml)。应用NC没有显着差异。从这项初步研究中获得的结果指出,从蓝莓微生物群对含姜黄素的NB和NC的细菌的敏感性,应进一步研究以评估纳米技术的体内适用性。
摘要:通过将病毒转化为病毒载体,已将病毒重新用于用于基因递送的工具。最常用的载体是慢病毒载体(LVS),这些载体源自人类免疫缺陷病毒,允许哺乳动物细胞中有效基因转移。它们代表了影响造血系统的最安全,最有效的治疗方法之一。LV通过不同的病毒信封(假型)进行修饰,以改变和改善其对不同原发性细胞类型的端主。囊泡口腔炎病毒糖蛋白(VSV-G)通常用于假型,因为它增强了基因转移到多种造血细胞类型中。然而,VSV-G假型LV无法在静态血细胞(例如造血干细胞(HSC),B和T细胞)中赋予有效的转导。为解决此问题,可以将VSV-G交换为其他异源病毒包膜糖蛋白,例如麻疹病毒,狒狒内源性逆转录病毒,Cocal病毒,Nipah病毒或仙境病毒的糖蛋白。在这里,我们提供了这些LV伪型如何改善HSC,B,T,T和自然杀伤(NK)细胞的转导效率,并通过多个体外和体内研究强调了拟型LV提供治疗基因或基因编辑工具的概括性遗传和癌细胞的概述。
重组腺相关病毒 (rAAV) 平台有望用于体内基因治疗,但抗原呈递细胞 (APC) 的不良转导会削弱其应用前景,而抗原呈递细胞又会引发宿主对 rAAV 表达的转基因产物的免疫。鉴于最近接受高剂量全身 AAV 载体治疗的患者出现的不良事件,推测这些不良事件与宿主的免疫反应有关,开发抑制先天性和适应性免疫的策略势在必行。使用 miRNA 结合位点 (miR-BS) 来赋予内源性 miRNA 介导的调控,使转基因表达脱离 APC,有望降低转基因免疫力。研究表明,将 miR-142BSs 设计到 rAAV1 载体中能够抑制树突状细胞 (DC) 中的共刺激信号、减弱细胞毒性 T 细胞反应并减弱小鼠转导肌细胞的清除,从而允许在肌纤维中持续转基因表达,同时几乎不产生抗转基因 IgG。在本研究中,我们针对 26 种在 APC 中大量表达但在骨骼肌中不表达的 miRNA 筛选了单个和组合 miR-BS 设计。高免疫原性卵清蛋白 (OVA) 转基因被用作外来抗原的替代物。在成肌细胞、小鼠 DC 和巨噬细胞中进行的体外筛选表明,miR-142BS 和 miR-652-5pBS 的组合强烈抑制了 APC 中的转基因表达,但保持了成肌细胞和肌细胞的高表达。重要的是,携带这种新型 miR-142/652-5pBS 盒的 rAAV1 载体在小鼠肌肉注射后比以前的去靶向设计实现了更高的转基因水平。该盒强烈抑制细胞毒性 CTL 激活和
CRISPR/Cas9 基因组编辑技术极大地促进了多种生物体内和体外基因的靶向失活。在斑马鱼中,只需将向导 RNA (gRNA) 和 Cas9 mRNA 注射到单细胞阶段胚胎中,即可快速生成敲除系。在这里,我们报告了一种简单且可扩展的基于 CRISPR 的载体系统,用于斑马鱼的组织特异性基因失活。作为原理证明,我们使用带有 gata1 启动子的载体来驱动 Cas9 表达,以沉默与血红素生物合成有关的 urod 基因,特别是在红细胞谱系中。Urod 靶向在斑马鱼胚胎中产生了红色荧光红细胞,重现了在 yquem 突变体中观察到的表型。虽然 F0 胚胎表现出嵌合基因破坏,但这种表型在稳定的 F1 鱼中似乎非常明显。该载体系统构成了空间控制基因敲除的独特工具,大大拓宽了斑马鱼功能丧失研究的范围。
Yu Zou,Siyan Shen,Andrii Karpus,Huxiao Sun,Regis Laurent等人。不对称的低生成阳离子阳离子磷酸聚合物作为非病毒载体,以提供用于乳腺癌治疗的微瘤。Biomacromolecules,2024,25(2),pp.1171-1179。10.1021/acs.biomac.3C01169。hal- 04502427