气候变化对全球医疗保健服务构成重大挑战,特别是在脆弱地区,预计新增 140 万零剂量儿童和 2 亿移民需要最后一英里的医疗保健服务,尤其是疫苗。气温升高、降雨模式变化、极端天气事件和洪水也将导致传染病急剧增加,到 2070 年,将有 47 亿人面临媒介传播疾病疟疾和登革热的风险。此外,目前每年有 350 万人死于水传播疾病,42 万人死于食源性疾病。常规免疫接种通过预防感染,是抵御对环境危机和气候影响敏感的疫苗可预防疾病的第一道防线。它帮助社区,特别是最边缘化的社区,建立抵御力并减轻气候敏感疾病爆发的风险。常规免疫接种为建立具有抵御力的卫生系统奠定了基础,能够应对与气候相关的和其他卫生紧急情况。
摘要 在制药领域,有各种诊断工具和输送系统可用于识别疾病和治疗。水体是一种新型囊泡药物输送系统。它是一种自组装纳米粒子,具有三层结构,由纳米晶体中心核和碳水化合物层组成,碳水化合物层可吸附该层上的生物活性物质或药物。碳水化合物涂层保护并保持生物活性物质的结构完整性。水体因其特性而具有巨大的潜力。它充当各种治疗药物和生物活性材料的载体。本综述提供了有关水体的信息,包括其历史发展、碳水化合物的重要性、其特性、优点、缺点、局限性、表征技术、应用、给药途径、专利、上市产品、后果、挑战和前景。因此,研究人员将受益于本综述,了解水体及其在制药科学中的应用和前景。
纳米载体——当前的知识状态 本报告总结了有关纳米载体的当前知识状态。纳米载体是具有独特物理化学性质的先进材料,可能对化学监管和风险评估带来特殊挑战。为此,我们准备了有关现有或正在开发的纳米载体及其(潜在)应用的文献综述。本报告的目的是首先全面描述纳米载体领域。基于纳米载体的工作定义,描述和分类了目前市场上的纳米载体类型和正在开发的新技术。此外,本报告概述了纳米载体的(潜在)应用领域及其当前的发展状况。
摘要:尽管目前正在开发各种治疗方法,但肺癌的死亡率仍然很高。此外,尽管临床上正在使用各种肺癌诊断和治疗策略,但在许多情况下,肺癌对治疗没有反应,并且存活率降低。癌症纳米技术,也称为癌症纳米技术,是一个相对较新的研究课题,汇集了化学、生物、工程和医学等各个领域的科学家。使用脂质基纳米载体辅助药物分布已经在多个科学领域产生了重大影响。已证明脂质基纳米载体有助于稳定治疗化合物,克服细胞和组织吸收障碍,并改善体内药物向特定目标区域的输送。因此,脂质基纳米载体正在被积极研究并用于肺癌治疗和疫苗开发。本综述讨论了使用脂质基纳米载体实现的药物输送改进、体内应用中仍然存在的障碍以及脂质基纳米载体在肺癌治疗和管理中的当前临床和实验应用。关键词:肺癌 脂质纳米载体 脂质体 药物递送系统
这些成功促使日本越来越多人认识到基因疗法是一种可行的治疗策略。日本医疗研究和开发机构 (AMED) 已批准资助从 2020 年开始的针对神经系统疾病的临床试验,包括帕金森病、ALS、GM2 神经节苷脂沉积症和脊髓小脑共济失调 1 型。
©2021作者。本文是根据创造性的共识4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适合原始作者和来源的信誉,就可以提供与创建者许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非在材料的信用额度中另有指示。如果材料未包含在Thearticle的Creative Commons许可中,并且您的预期用途不允许法定调制或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
摘要:慢病毒载体是疫苗接种最有效的病毒载体之一。与参考腺病毒载体形成鲜明对比的是,慢病毒载体在体内转导树突状细胞方面具有很高的潜力。在这些细胞中,慢病毒载体最能有效地激活幼稚 T 细胞,它们诱导转基因抗原的内源性表达,这些抗原可直接进入抗原呈递途径,而无需外部抗原捕获或交叉呈递。慢病毒载体可诱导强大、强劲和持久的体液、CD8 + T 细胞免疫力,并有效预防多种传染病。人类群体对慢病毒载体没有预先存在的免疫力,这些载体的促炎特性非常低,为它们在粘膜疫苗接种中的应用铺平了道路。在这篇综述中,我们主要总结了慢病毒载体的免疫学方面、它们最近诱导 CD4 + T 细胞的优化,以及我们最近在临床前模型中使用慢病毒载体进行疫苗接种的数据,包括预防黄病毒、SARS-CoV-2 和结核分枝杆菌。
– 加速先进水分解技术的研究 – 利用当今的可再生能源和核能 – 通过 H2NEW 联盟在短短 5 年内实现 100 美元/千瓦电解器堆栈目标 – 包括对低温电解 [ LTE](PEM,液体碱性)和高温电解 [HTE](固体氧化物)电解器技术的研究 – 10 亿美元的 BIL 活动现在使电解方面的努力增加了一个数量级,以加速开发 • 长期:利用太阳能或热量更直接地分解水
