(VB) 移至导带 (CB),在 VB 中产生空穴 (h +)。Mg 和 S 掺杂剂产生窄带隙,使得在相似能量下更容易区分光诱导电荷载流子。因此,在相似能量下更容易分离光诱导电荷载流子 (Singaram et al., 2017)。Mg 和 S 离子既充当电子受体又充当供体,将成功抑制电荷复合并产生更具反应性的物种以促进 MB 降解。由于
• 每个设备都有需要理解和设计的故障机制 • 高电场导致时间相关击穿 (TDB) • 高电场和热载流子导致电荷捕获 • 切换会导致反向恢复、高压摆率和热载流子磨损带来的应力 • 已知的 GaN 故障模式是切换时间尺度上的 Rds-on 增加。这种动态 Rds-on 增加是由于电荷捕获造成的。 • 可靠性工程包括使 FET 能够可靠地承受应用中的应力
摘要:过去几十年来,人们对基于半导体薄膜、纳米线和二维原子层的光电导体进行了广泛的研究。然而,没有明确的光增益方程可以用来拟合和设计这些器件的光响应。在本文中,我们根据实验观察,成功推导出硅纳米线光电导体的明确光增益方程。硅纳米线是通过标准光刻技术在绝缘体上硅晶片的器件层上进行图案化而制成的,该晶片上掺杂了浓度为 ∼ 8.6 × 10 17 cm − 3 的硼。研究发现,制成的硅纳米线具有宽度约为 32 nm 的表面耗尽区。该耗尽区保护沟道中的电荷载流子免受表面散射的影响,从而使电荷载流子迁移率与纳米线尺寸无关。在光照下,耗尽区呈对数变窄,纳米线沟道相应变宽。光霍尔效应测量表明,纳米线光电导不是由载流子浓度的增加引起的,而是由纳米线通道的加宽引起的。因此,纳米线光电导体可以建模为与纳米线表面附近的浮动肖特基结相关的电阻器。基于肖特基结的光响应,我们推导出纳米线光电导体的显式光增益方程,该方程是光强度和器件物理参数的函数。增益方程与实验数据非常吻合,从实验数据中我们提取出少数载流子的寿命为几十纳秒,与文献中报道的纳米线中少数载流子的寿命一致。关键词:光电导体,显式增益方程,增益机制,硅纳米线,光霍尔效应 P
目前,由于钝化方法不完善,载流子复合限制了钙钛矿太阳能电池 (PSC) 的全部潜力。本文量化了由于界面能量偏移和缺陷导致的复合损失机制。结果表明,有利的能量偏移可以减少少数载流子并比化学钝化更有效地抑制界面复合损失。为了获得高效率的 PSC,2D 钙钛矿是有希望的候选材料,它具有强大的场效应,并且只需要在界面处进行适度的化学钝化。 2D/3D 异质结 PSC 的增强钝化和载流子提取功能使其小尺寸器件的功率转换效率提高到 25.32%(经认证为 25.04%),大面积模块(指定面积为 29.0 cm 2)的功率转换效率提高到 21.48%。2D/3D 异质结还抑制了离子迁移,因此未封装的小尺寸器件在最大功率点连续运行 2000 小时后仍能保持其初始效率的 90%。
简介在过去的五年中,光伏行业见证了转换效率不断提高的发展势头。长期以来,该行业的主力一直是铝背面场 (BSF) 太阳能电池,但现在它正被钝化发射极和背面电池 (PERC) 所取代,PERC 可使生产中的转换效率超过 21%,在临近生产环境中的转换效率高达 23.6% [1]。对这些太阳能电池的详细损耗分析表明,金属/半导体触点处的少数电荷载流子复合是主要的损耗机制 [2]。通常采用两种策略来减轻复合损耗:(1) 通过扩散或合金化(例如选择性发射极或铝背面场)在金属触点下方形成重掺杂的 c-Si 区域,以减少界面处的少数电荷载流子;(2) 减少金属化面积分数。后一种策略的一个主要例子是 PERC 结构,其特点是具有局部 Al 接触的介电背面钝化,从而不仅增加了开路电压 (V oc ),而且还增加了短路电流密度 (J sc )(因为改善了红外光的背面反射)。然而,必须通过调整背面接触线(或点)的间距和基极电阻率来仔细平衡 V oc 增益和填充因子 (FF ) 损失。因此,克服这一限制的更好策略是钝化接触,它可以抑制少数电荷载流子复合并实现有效的多数电荷载流子传输。最著名的例子是 a-Si:H/c-Si 异质结(通常称为 HIT、HJT、SHJ)太阳能电池,
低阈值光学非线性的潜力在光子学和概念光学神经元网络领域引起了广泛关注。二维 (2D) 半导体中的激子在这方面尤其有前景,因为减少的屏蔽和维度限制会促进它们明显的多体相互作用以实现非线性。然而,对这些相互作用的实验测定仍然不明确,因为光泵浦通常会产生激子和未结合载流子的混合物,其中带隙重正化和载流子屏蔽对激子能量的影响相互抵消。通过比较单层 MoSe 2 光致发光光谱对激子基态和激发态能量的影响,我们能够分别识别中性激子和电荷载流子对库仑结合的屏蔽。当中性激子密度从 0 增加到 4 × 10 11 𝑐𝑚 −2 时,激子基态 ( A-1s ) 和激发态 ( A-2s ) 之间的能量差红移 5.5 meV,而电子或空穴密度增加时则发生蓝移。这种能量差变化归因于中性激子的库仑结合相互屏蔽,从中我们提取出激子极化率为 𝛼 2𝐷