外场的电子屏蔽[1]、拉曼振动[2]和电子传输。[3]然而,在过渡金属二硫属化物 (TMDs) 这一丰富的二维半导体家族中,堆垛序的影响很少被探索,[4,5] 尽管第一性原理计算表明堆垛序驱动价带分裂和激子结合能变化。[6]TMD 拥有许多有趣的量子现象,可用于新型电子器件。[7–9] ReS 2 是 TMD 中的一颗新星,近年来备受关注。ReS 2 具有扭曲的 1T 三斜晶体结构,其中 Re 原子的额外 d 价电子形成与 b 轴平行的锯齿状 Re 链,大大降低了其对称性。尽管自 1997 年起人们就开始研究块体 ReS 2 的性质[10–21],但对二维 ReS 2 的研究直到 2014 年左右才开始兴起。[22] 与其他 TMD 相比,ReS 2 的层间耦合要弱得多。[22] ReS 2 的独特之处在于其面内各向异性性质,这早在 2001 年就已在块体中得到证实。[15] 在二维 ReS 2 中,观察到的性质包括偏振相关的激子[23,24]、非线性吸收[25]、电子传输和 SHG 发射[26,27]等。比较
石墨烯是第一种真正的二维材料,[1] 是形成简单六边形晶格的单层碳。剥离的石墨烯薄片表现出了高迁移率和异常量子霍尔效应 (QHE) 等显著的电学特性,引起了人们对其在许多实际应用中的极大兴趣。[2–5] 然而,由于剥离的石墨烯薄片的尺寸限制(通常高达几十微米),石墨的机械剥离无法提供适用于商业晶圆尺寸电子器件或精确电阻计量的石墨烯。当 SiC 衬底在超高真空或惰性气体氛围中以高于 1000°C 的温度退火时,Si 升华后碳会残留在 SiC 表面并重新排列形成石墨烯层。这种外延石墨烯 (EG) 已准备好用于大规模器件制造,无需转移到另一个绝缘基板上。在六边形 SiC 晶片的硅端面 (Si 面) 上生长的石墨烯由于与 SiC 晶体的方位角取向一致,可以形成大域。与在相反 (碳) 面上生长的石墨烯相比,在 Si 面上,EG 还具有更可控的生长动力学。最近,通过优化