洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
随着有机-无机杂化钙钛矿的技术应用范围不断扩大,从光伏太阳能电池到发光器件,再到纳米级晶体管,确定微结构在决定载流子动力学如何影响器件效率方面的作用至关重要。本文,我们报告了杂化钙钛矿在成核和生长动力学的各个阶段的电荷载流子的超快动力学。溶液加工制造技术,其旋涂条件经过优化以控制中间相的成核密度,在温度梯度退火后转化为杂化钙钛矿。该策略将最终形成大晶粒薄膜的成核和生长步骤解耦,使我们能够探测电子和载流子动力学的差异。令人惊讶的是,我们发现成核微晶已经显示出杂化钙钛矿的电子特性,并且与大晶粒杂化钙钛矿薄膜具有相似的飞秒到纳秒动力学。
在过去十年中,许多晶体硫族化物由于其不寻常的物理特性和键合机制而引起了人们的关注。[1–6] 对于从相变存储器件[7–9]和光子开关[10–12]到热电器件[13–17]到利用拓扑效应的原型器件[18–20]的许多应用来说,通过改变化学计量或退火等方式来调整电传输的能力至关重要。 特别是,控制电荷载流子浓度和迁移率将非常有利。 例如,对于基于拓扑绝缘体的导电表面态的器件,通常重要的是消除不需要的体载流子源以抑制体传输。 对于热电装置,需要具有精确控制载流子浓度的 n 型和 p 型材料。这些方向的努力包括对一系列三元碲化物中载流子类型的化学调节[21,22],以及在 GeSbTe (GST) 化合物(如 Ge 2 Sb 2 Te 5 )和类似的无序硫族化物中通过热退火诱导的安德森跃迁的观察[23–27]。这些硫族化物位于 IV-VI 和 V 2 VI 3 材料之间的连接线上(例如,GST 中的 GeTe 和 Sb 2 Te 3 )。在前一种情况下,[22] 化学计量变化用于诱导从电子到空穴占主导地位的电荷传输转变,而在后一种情况下,[23–27] 化学计量保持恒定,通过退火结晶相来调节无序水平,导致在增加有序性时发生绝缘体-金属转变。非晶态 GST 结晶为亚稳态、无序、岩盐状相,其中 Te 占据阴离子位置,Ge、Sb 和空位随机占据阳离子位置。通过进一步退火立方体结构可获得稳定的六方相。这三个相都是半导体,但由于自掺杂效应,即由于原生点缺陷导致导电的块状状态被空穴占据,并将费米能级移向价带最大值,因此结晶态显示出高浓度的 p 型载流子。这种现象导致非晶相和结晶相之间产生强烈的电对比,这在
CK Sheng*、MGM Sabri、MF Hassan、EAGE Ali 马来西亚登嘉楼大学科学与海洋环境学院,21030 瓜拉尼鲁斯,登嘉楼,马来西亚 这项工作首次实施了基于光声 (PA) 技术的光热波表征,以研究在不同温度下退火的 Si 晶片 (Au/Si) 上沉积的金薄膜层的热特性和载流子传输特性。XRD 图案表明,在退火温度为 330 o C 时追踪到了 Au81Si19 相的亚稳态金 (Au) 硅化物,当温度进一步升高到 370 o C 时,该结构消失。结果表明,获得 Au/Si 结构的 PA 信号低于纯 Si 晶片。通过拟合 PA 信号相位关系阐明了 Si 和 Au/Si 的热特性和载流子传输特性。结果表明,随着退火温度的升高,Au/Si 的热扩散率和表面复合速度增加,复合寿命缩短。然而,当温度接近 370 o C 时,表面复合和热传输过程减弱,这可能是由于硅化物团簇的断裂造成的。(2021 年 7 月 20 日收到;2021 年 10 月 29 日接受)关键词:金硅化物,热退火,光声,热扩散率,复合
在第 3 部分中,CuBiI 4 的 JCPDS 卡号应为 81-197,而应改为 081-0197。可以使用此编号在与 PDF 2004 数据库链接的 Crystallographica Search-Match(版本 2、1、1、0)软件中检索 CuBiI 4 的晶体信息。皇家化学学会对这些错误以及由此给作者和读者带来的任何不便深表歉意。
摘要。众所周知,多结太阳能电池中的发光耦合效应有助于通过载流子重新分布实现子电池之间的电流匹配。我们使用防潮全无机钙钛矿量子点 (PQD) 膜展示了 III-V 多结太阳能电池装置中的载流子重新分布。这种疏水性 PQD 膜应用于完整的 III-V 多结太阳能电池装置。这成功地展示了垂直方向的电流重新分布,表现为较低带隙子电池中的电流收集增加,以及横向的电流重新分布,从发光起源的较高带隙子电池相邻的较低带隙子电池中电流收集均匀性改善可以看出。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JPE.10.042005]
S. Memarzadeh 马里兰大学电气与计算机工程系,美国马里兰州帕克城 20742 马里兰大学电子与应用物理研究所,美国马里兰州帕克城 20742 KJ Palm 马里兰大学物理系,美国马里兰州帕克城 20742 马里兰大学电子与应用物理研究所,美国马里兰州帕克城 20742 TE Murphy 教授 马里兰大学电气与计算机工程系,美国马里兰州帕克城 20742 马里兰大学电子与应用物理研究所,美国马里兰州帕克城 20742 MS Leite 教授 加利福尼亚大学材料科学与工程系,美国加利福尼亚州戴维斯 95616 JN Munday 教授 加利福尼亚大学电气与计算机工程系,美国加利福尼亚州戴维斯 95616 马里兰大学电气与计算机工程系,美国电子jnmunday@ucdavis.edu
考虑了基于材料的自旋阀,其中自旋翻转通过电荷载流子的空间分离而受到抑制,同时保持阀体积的电中性。讨论了将这些阀用作电池的可能性。结果表明,如果控制阀两端的电位差,可能会出现“魔鬼阶梯”等不相容性效应,这与电池充电和放电时发生的库仑相互作用和电子重新分布有关。预测了随着阀中费米能级的变化,传导电子的自发自旋极化的出现和消失的影响。这种自旋阀还可用于实现自旋电子存储单元、超级电容器和类似设备。
相互作用包括π-π、[1]氢键[2]和范德华力[3]等。最近,阳离子分子与石墨烯中离域π电子之间的阳离子-π相互作用被认为是另一种重要的分子-石墨烯相互作用。Xie等人证实了罗丹明染料和石墨烯等π共轭体系之间的阳离子-π相互作用,这种相互作用导致罗丹明分子的荧光发射降低,因为激发的染料分子通过罗丹明染料/石墨烯界面上的非辐射途径衰变。[4]另一方面,Tang等人报道了通过阳离子-π相互作用锚定在石墨烯片上的罗丹明B分子在制备PVA /石墨烯复合材料时有助于石墨烯在聚乙烯醇(PVA)中的分散。 [5] 分子-石墨烯阳离子-π 相互作用的一个显著影响是分子中功能阳离子对石墨烯的掺杂。[6]