高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
图12在(a)和(a)之前和(b)4分弯曲测试期间(a)之前和(b)裂纹进行载荷转移的示意图。顶部:4分弯曲测试下的复合样品。中间:拉伸应力下的局部微观结构(红线表示BLG血小板,大胆的血小板是重叠的血小板)。底部:(a)三连接处FLG血小板的皱纹结构,诱发了效率低下的载荷转移和复合材料中的低刚度; (b)由于有效的载荷转移,两端的FLG血小板的拉伸填充桥桥嵌入了断裂表面[30]。
对于T型样品,热处理后裂纹扩展能量增加2倍(从约23 J增加到约46 J),这是由于裂纹起始能量和裂纹扩展能量重新结合,裂纹扩展能量增加所致。动态载荷图分析表明,热处理后,出现了尖锐的载荷点(视为裂纹起始载荷),下一个载荷峰值表征了新裂纹的起始,如图8a和8d所示。在层状材料中也观察到了类似的材料行为[30]。对样品的原始状态和退火状态进行比较,发现其他材料在热处理后形成了多个裂纹
该项目由四个工作包组成。在第一个工作包中,根据 DLR 要求定义和记录了载荷过程。在第二个工作包中,比较了不同复杂程度的数值模拟方法,重点是空气动力学方法以及离散阵风和机动载荷的分析方法。在第三个工作包中,比较了不同的机身结构尺寸确定方法,并使用实验数据进行了验证。在第四个工作包中,载荷过程的实施已应用于不同的用例 - 应用包括为运输飞机配置生成初步设计载荷、对现有远程飞机的载荷进行数值分析以及在两个
该项目分为四个工作包。在第一个工作包中,根据 DLR 要求定义和记录了载荷过程。在第二个工作包中,比较了不同复杂程度的数值模拟方法,重点是空气动力学方法以及离散阵风和机动载荷的分析方法。在第三个工作包中,比较了各种机身结构尺寸确定方法,并用实验数据进行了验证。在第四个工作包中,载荷过程的实施已应用于不同的用例 - 这些应用包括为运输飞机配置生成初步设计载荷、对现有远程飞机的载荷进行数值分析以及在两架飞机上进行飞行测试时测量载荷,第一架飞机是滑翔机的结构,第二架飞机是高空研究飞机的外部货舱。本文遵循 [2] 中给出的大纲。工作包 2、3 和 4 的工作在论文中进行了进一步总结,并在单独的论文中进行了详细描述,请参阅 [3]、[4]、[5]、[6]、[7] 和 [8]。
目录 第 1 章 - 一般原则 第 1 节 - 应用 第 2 节 - 符合性验证 第 3 节 - 功能要求 第 4 节 - 符号和定义 第 2 章 - 总体布置设计 第 1 节 - 分舱布置 第 2 节 - 舱室布置 第 3 节 - 通道布置 第 3 章 - 结构设计原则 第 1 节 - 材料 第 2 节 - 净尺寸方法 第 3 节 - 腐蚀附加 第 4 节 - 极限状态 第 5 节 - 腐蚀防护 第 6 节 - 结构布置原则 第 4 章 - 设计载荷 第 1 节 - 总则 第 2 节 - 船舶运动和加速度 第 3 节 - 船体梁载荷 第 4 节 - 载荷工况 第 5 节 - 外部压力 第 6 节 - 内部压力和力 第 7 节 - 载荷条件 第 8 节 - 载荷手册和载荷仪器 附录 1 - 货舱质量曲线 附录 2 - 直接强度分析的标准载荷条件 附录 3 - 疲劳强度评估的标准载荷条件 第 5 章 - 船体梁强度 第 1 节 -屈服校核 第 2 节 - 极限强度校核 附录 1 - 船体梁极限强度
航空复合材料结构的开发和认证仍然主要基于金字塔式测试。这种方法在测试次数和设计循环方面成本极高。此外,它基于单轴测试,而实际结构大多承受组合载荷。合作研究计划“VERTEX”的目标是朝着预测虚拟测试的方向发展,并大幅降低航空航天计划的开发成本。在第一部分中,介绍了航空结构多轴测试的具体方法。技术样本的概念及其尺寸是合理的。然后,介绍了一种特定试验台的开发,在该试验台上可以进行压缩/拉伸、剪切、内部压力和组合。由于结构测试对仪器来说很复杂,因此开发了一种特定的全场测量技术。它基于多摄像机仪器和原始的立体数字图像相关 (FE-SDIC) 有限元方法。在这样的框架内,由于可以使用相同的网格进行模拟和测量,因此可以直接比较相应的位移。此外,FE-SDIC 测量的机械正则化允许评估机械一致的场,例如可以用作模拟边界条件的位移和旋转场。实验程序、测量
09-05 疲劳分析与设计中的平均应力评估 提交人:Stig Berge,挪威科技大学海洋技术系(挪威特隆赫姆 7491)。传真 +47 73595528 电子邮件:stig.berge@ntnu。no )和 S.Petinov,材料强度系,圣彼得堡国立理工大学(俄罗斯圣彼得堡理工大学 195251,Polytechnicheskaya St. 29,电话:7-812-552-6303 电子邮件:Petinov@SP5198.spb.edu ) 1.0 目标 1.1 平均应力是船体结构细节的载荷历史和疲劳的重要组成部分。当拉伸时,它会增加载荷循环中的最大应力并缩短结构部件的疲劳寿命。不同方法之间缺乏共性,因此有必要验证模型并协调规范。1.2 但是,在随机和恒定载荷成分组合的情况下,缺乏评估平均应力影响的适当方法。1.3 该项目的目标是审查有关该主题的可用数据,计划和开展结构钢实验,分析结果并制定用于海洋应用的疲劳分析中平均应力影响的评估方法。2.0 背景 2.1 船体和海洋焊接结构的设计规范最近大多忽略了平均应力对关键细节疲劳性能的影响。ISSC 于 2003 年进行的一项调查报告称,8 个主要船级社中有 6 个使用了平均应力校正因子。在最近通过的《油船和散货船共同结构规范》(IACS,2005)中,实施了平均应力修正,尽管油船和散货船的形式截然不同。最近在 IACS 文件中建议的考虑程序是引入等效应力,这允许考虑残余焊接应力和 SW 载荷条件下的平均应力。2.2 但是,应用修正和等效应力可能仅被视为近似值,因为它基于具有恒定幅度和平均应力的组合循环应力的隐含假设。2.3 海洋应用中载荷序列的特定属性是窄带随机波载荷和缓慢变化(或恒定)载荷的组合,被视为平均应力的来源。这意味着隐含的实验程序和材料疲劳行为的相应建模应考虑平均应力与实际变幅载荷的影响。这将揭示循环应变硬化或软化的具体性质
混凝土路面已广泛用于机场跑道、滑行道和停机坪的修建。航空业通过开发更长、更宽、更重的飞机以及越来越多的机轮来应对日益增长的航空旅行需求,以支撑地面运行中的飞机。许多研究人员基于有限元法 (FEM) 开发了用于分析接缝混凝土路面的模型。尽管取得了显着的进步,但重要的考虑因素却被忽视了。这些简化可能会影响所开发模型的结果并使其不切实际。本研究进行了敏感性研究,以调查载荷参数对载荷传递效率 (LTE) 指标的影响,其中 LTE 概念是机场设计程序的基础。三维计算模型的开发由一组技术要求指导,所有技术要求均在最终模型中使用有限元代码 ABAQUS (6.13) 得到满足。研究了不同车轮配置下主起落架载荷大小与正负热梯度相结合的影响。介绍了验证过程以增加对模型结果的信心。了解刚性机场路面在这种情况下的响应对于开发新的路面设计程序以及对现有路面实施适当的补救措施非常重要。结果表明,利用动态载荷可以研究路面在不同车轮配置下可能承受的疲劳循环。这样可以检查由于车轮载荷引起的拉伸压缩循环,这可能会降低混凝土的强度,并且比考虑仅在一个方向上施加的静态载荷产生更多的疲劳损伤,即不涉及应力反转。此外,热梯度从正到负的变化显著改变了板的曲率形状。在车轮载荷和正热梯度的组合中发现了应力的临界情况。