摘要 — 本文研究了一种无人机 (UAV) 辅助移动边缘计算 (MEC) 系统,其中 UAV 为地面 MEC 系统提供补充计算资源。UAV 通过创建相应的虚拟机来处理从移动用户 (MU) 接收的计算任务。由于 MEC 系统中 UAV 的共享 I/O 资源有限,每个 MU 都会在决策时期内竞争安排本地和远程任务计算,旨在最大化预期的长期计算性能。MU 之间的非合作交互被建模为随机博弈,其中 MU 的决策取决于全局状态统计数据,并且所有 MU 的任务调度策略是耦合的。为了近似纳什均衡解,我们提出了一种基于长短期记忆和深度强化学习 (DRL) 技术的主动方案。建立 MEC 系统的数字孪生,以离线训练主动 DRL 方案。使用所提出的方案,每个 MU 仅使用自己的信息进行任务调度决策。数值实验表明,该方案在决策时期内每个 MU 的平均效用方面具有显着的性能提升。
本次会议旨在为本周的会议奠定基础,由 Hideki Noguchi 主持,他欢迎与会者参加因 Covid 19 疫情而举行的首次虚拟 IALA 研讨会。主席解释说,该研讨会原计划于 2021 年 2 月在东京与 ENAV 28 一起举行。该研讨会的独特之处还在于它涉及四个 IALA 技术委员会:航标要求和管理 (ARM);工程与可持续性 (ENG);电子航海信息服务和通信 (ENAV);以及船舶交通服务 (VTS),因为海上自主水面舰艇 (MASS) 对海上航标(包括物理 AtoN 和 VTS)产生了重大影响,并且这些技术发展迅速。主席回顾了国际海事组织海事安全委员会 (MSC) 在第 103 届会议上完成的 MASS 使用监管范围界定练习 (RSE) 的结果。该文件与所有参与者共享,以供研究和分析。
摘要 目的 CT 和 MRI 对术前准确评估肿瘤与重要血管、脑组织及颅颌面骨的三维空间位置关系至关重要,探讨基于 CT-MRI 图像融合在颞下窝及颅中窝沟通性肿瘤治疗中术前评估、虚拟手术规划及导航手术的应用价值。方法 回顾性研究 8 例颞下窝-颅中窝沟通性肿瘤患者,将平扫、增强 CT 和 MRI 影像数据导入工作站进行图像融合,依次进行三维图像重建、虚拟手术规划及术中导航。通过对 ICFCT 患者采用 CT-MRI 图像融合导航引导下进行活检或手术后的临床资料进行分析,评估治疗效果。结果 8例患者均获得了高质量的CT-MRI图像融合及三维重建,图像融合结合三维图像重建增强了ICFCT术前评估,并通过虚拟规划提高了手术效果。4例导航引导下穿刺活检均获得了明确的病理诊断。7例导航引导下手术除1例例外,其余患者均实现了肿瘤完整切除。1例复发性脑膜瘤患者术后出现脑脊液漏。结论 CT-MRI图像融合结合计算机辅助导航管理,优化了ICFCT穿刺活检和手术的准确性、安全性及手术效果。
自动驾驶汽车能以雷达、光学雷达、 GPS 及电脑视觉等技术感测其环境。 先进的控制系统能将感测资料转换成适当的导航道路,以及障碍与相关标志。 自动驾驶汽车能透过感测输入的资料,更新其地图资讯,让交通工具可以持续追踪其位置,并因此提高交通系统的运输效率。例如:自动驾驶接驳公车。 特斯拉是世界上最早的自动驾驶汽车生产商,特斯拉汽车已经成为世界最畅销充电式汽车公司。从特斯拉的智能车网站介绍,撷取其中几项性能: 1. 自动辅助导航驾驶「自动辅助导航驾驶」会建议车道变换以最佳规划行驶路线,此外还会做出调整,让您不会受到慢车或卡车的阻挡而妨碍行驶速度。启用时,「自动辅助导航驾驶」也会根据目的地自动驾驶您的车辆驶向公路交流道或出口。 2. 自动停车和智慧叫车当您到达目的地后,只要在入口处下车后,您的车辆就会进入停车搜寻模式, 自动寻找停车位和停车。反之,您只要在手机上点选便能够「召唤」您的车辆。
在自然移动地图辅助导航任务中持续评估行人的认知负荷具有挑战性,因为对刺激呈现、人与地图的交互以及其他参与者反应的实验控制有限。为了克服这一挑战,本研究利用导航员在导航过程中的自发眨眼作为连续记录的脑电图 (EEG) 数据中的事件标记,以评估移动地图辅助导航任务中的认知负荷。我们研究了在给定路线上的移动地图上显示不同数量的地标(3 个 vs. 5 个 vs. 7 个)是否以及如何影响导航员在虚拟城市环境中导航时的认知负荷。认知负荷是通过眨眼相关的额中部 N2 和顶枕 P3 的峰值幅度来评估的。我们的结果显示,与显示 3 个或 5 个地标相比,顶枕 P3 幅度增加表明在 7 个地标条件下的认知负荷更高。我们之前的研究已经表明,与 3 个地标条件相比,参与者在 5 个和 7 个地标条件下获得了更多的空间知识。结合当前的研究,我们发现,与 3 个或 7 个地标相比,显示 5 个地标可以提高空间学习能力,而不会在不同城市环境中导航时增加认知负荷。我们的研究结果还表明,在地图辅助寻路过程中可能存在认知负荷溢出效应,即在地图查看过程中的认知负荷可能会影响环境中目标导向运动过程中的认知负荷,反之亦然。我们的研究表明,在设计未来导航辅助设备的显示时,应同时考虑用户的认知负荷和空间学习,导航员的眨眼可以作为有用的事件制造者,以解析反映自然环境中认知负荷的连续人类大脑动态。
汽车移动性。HSPA 驱动的 H24 模块为下一代汽车应用打开了大门。利用汽车中的移动宽带实现互联网辅助导航等高级信息娱乐系统,让汽车充分发挥互联网的强大功能。行业领先的稳健性和车载 GPS 功能使 H24 成为车队管理、资产跟踪和其他基于位置的无线应用的理想选择。
(1)机组未能充分规划和执行 SKCL 19 号跑道的进近,且自动化设备使用不当;(2)尽管机组多次提醒他们不宜继续进近,但他们仍未停止进近卡利机场;(3)机组缺乏对垂直导航、地形接近度和关键无线电辅助设备相对位置的态势感知;(4)当 FMS [飞行管理系统] 辅助导航变得混乱并在飞行的关键阶段要求过大的工作负荷时,机组未能恢复到基本的无线电导航。”
406 MHz EPIRB 相对于旧式模拟 EPIRB 的优势包括全球覆盖、定位精度可达 5 公里以内,以及更稳定的传输信号,从而缩短检测时间。最重要的是,添加独特的数字编码消息可为搜救机构提供重要信息,包括信标注册国家/地区和遇险船只的身份。误报发生率也大大降低,同时还避免了宝贵救援资源的不必要部署。MT403/MT403FF 包含辅助导航发射器,使装备适当的搜救部队能够导航至遇险信标。
VDL 模式 4 是一种强大的自组织 TDMA 数据链路,可用于 CNS 功能。相反,来自伽利略的导航数据将用于航空领域的 ADS-B 监视和其他航空应用。伽利略提供的精确计时为 .VDL 模式 4 广播的同步提供了精确的 UTC 信号。精确计时还构成了辅助导航功能的基础,当由于缺乏卫星可见性或其他原因而无法使用基于 GNSS 的主要导航功能时,可以从 VDL 模式 4 中获取该辅助导航功能作为备用导航源。因此,VDL 模式 4 和伽利略是对伽利略的适当补充,因此导航和精确计时可供补充使用,并且是提前部署伽利略接收器的便捷方式。
导航的几何概念、参考框架、坐标变换、变换方法比较。惯性传感器、惯性导航系统-机械化、外部辅助导航、组合导航。模块 4:制导简介(7 个讲座小时)导弹制导律;制导律的分类;经典制导律;现代制导律、自动驾驶仪 - 纵向、横向和导弹。模块 5:控制简介(8 个讲座小时)控制系统简介开环和闭环控制系统-传递函数极点和零点-框图简化-信号流图-梅森增益公式模块 6:系统稳定性(9 个讲座小时)特征方程-稳定性概念-劳斯稳定性标准根轨迹。经典线性时不变控制系统。稳定性;时域特性。航空航天系统的 PID 控制器设计。频域特性、奈奎斯特和波特图及其在航空航天系统控制器设计中的应用。教科书:
