在自然移动地图辅助导航任务中持续评估行人的认知负荷具有挑战性,因为对刺激呈现、人与地图的交互以及其他参与者反应的实验控制有限。为了克服这一挑战,本研究利用导航员在导航过程中的自发眨眼作为连续记录的脑电图 (EEG) 数据中的事件标记,以评估移动地图辅助导航任务中的认知负荷。我们研究了在给定路线上的移动地图上显示不同数量的地标(3 个 vs. 5 个 vs. 7 个)是否以及如何影响导航员在虚拟城市环境中导航时的认知负荷。认知负荷是通过眨眼相关的额中部 N2 和顶枕 P3 的峰值幅度来评估的。我们的结果显示,与显示 3 个或 5 个地标相比,顶枕 P3 幅度增加表明在 7 个地标条件下的认知负荷更高。我们之前的研究已经表明,与 3 个地标条件相比,参与者在 5 个和 7 个地标条件下获得了更多的空间知识。结合当前的研究,我们发现,与 3 个或 7 个地标相比,显示 5 个地标可以提高空间学习能力,而不会在不同城市环境中导航时增加认知负荷。我们的研究结果还表明,在地图辅助寻路过程中可能存在认知负荷溢出效应,即在地图查看过程中的认知负荷可能会影响环境中目标导向运动过程中的认知负荷,反之亦然。我们的研究表明,在设计未来导航辅助设备的显示时,应同时考虑用户的认知负荷和空间学习,导航员的眨眼可以作为有用的事件制造者,以解析反映自然环境中认知负荷的连续人类大脑动态。
摘要 目的 CT 和 MRI 对术前准确评估肿瘤与重要血管、脑组织及颅颌面骨的三维空间位置关系至关重要,探讨基于 CT-MRI 图像融合在颞下窝及颅中窝沟通性肿瘤治疗中术前评估、虚拟手术规划及导航手术的应用价值。方法 回顾性研究 8 例颞下窝-颅中窝沟通性肿瘤患者,将平扫、增强 CT 和 MRI 影像数据导入工作站进行图像融合,依次进行三维图像重建、虚拟手术规划及术中导航。通过对 ICFCT 患者采用 CT-MRI 图像融合导航引导下进行活检或手术后的临床资料进行分析,评估治疗效果。结果 8例患者均获得了高质量的CT-MRI图像融合及三维重建,图像融合结合三维图像重建增强了ICFCT术前评估,并通过虚拟规划提高了手术效果。4例导航引导下穿刺活检均获得了明确的病理诊断。7例导航引导下手术除1例例外,其余患者均实现了肿瘤完整切除。1例复发性脑膜瘤患者术后出现脑脊液漏。结论 CT-MRI图像融合结合计算机辅助导航管理,优化了ICFCT穿刺活检和手术的准确性、安全性及手术效果。
本次会议旨在为本周的会议奠定基础,由 Hideki Noguchi 主持,他欢迎与会者参加因 Covid 19 疫情而举行的首次虚拟 IALA 研讨会。主席解释说,该研讨会原计划于 2021 年 2 月在东京与 ENAV 28 一起举行。该研讨会的独特之处还在于它涉及四个 IALA 技术委员会:航标要求和管理 (ARM);工程与可持续性 (ENG);电子航海信息服务和通信 (ENAV);以及船舶交通服务 (VTS),因为海上自主水面舰艇 (MASS) 对海上航标(包括物理 AtoN 和 VTS)产生了重大影响,并且这些技术发展迅速。主席回顾了国际海事组织海事安全委员会 (MSC) 在第 103 届会议上完成的 MASS 使用监管范围界定练习 (RSE) 的结果。该文件与所有参与者共享,以供研究和分析。
摘要 — 本文研究了一种无人机 (UAV) 辅助移动边缘计算 (MEC) 系统,其中 UAV 为地面 MEC 系统提供补充计算资源。UAV 通过创建相应的虚拟机来处理从移动用户 (MU) 接收的计算任务。由于 MEC 系统中 UAV 的共享 I/O 资源有限,每个 MU 都会在决策时期内竞争安排本地和远程任务计算,旨在最大化预期的长期计算性能。MU 之间的非合作交互被建模为随机博弈,其中 MU 的决策取决于全局状态统计数据,并且所有 MU 的任务调度策略是耦合的。为了近似纳什均衡解,我们提出了一种基于长短期记忆和深度强化学习 (DRL) 技术的主动方案。建立 MEC 系统的数字孪生,以离线训练主动 DRL 方案。使用所提出的方案,每个 MU 仅使用自己的信息进行任务调度决策。数值实验表明,该方案在决策时期内每个 MU 的平均效用方面具有显着的性能提升。