靶向芳香化酶可剥夺 ER + 乳腺癌中的雌激素,是治疗此类肿瘤的有效方法。然而,药物耐药性是尚未得到满足的临床需求。长期雌激素缺乏 (LTED) ER + 乳腺癌细胞的脂质组学分析(芳香化酶抑制剂耐药性模型)显示细胞内脂质储存增强。功能代谢分析表明,脂滴与过氧化物酶体(我们发现它们在 LTED 细胞中富集且活跃)一起控制氧化还原稳态并赋予耐药肿瘤代谢适应性。这种重编程由乙酰辅酶 A 羧化酶 1 (ACC1) 控制,其靶向选择性地损害了 LTED 存活率。然而,添加支链脂肪酸和超长链脂肪酸可逆转 ACC1 抑制,这一过程由过氧化物酶体功能和氧化还原稳态介导。这些发现的治疗相关性在芳香化酶抑制剂治疗的患者样本中得到验证。最后,针对 ACC1 减少了耐药患者来源的异种移植瘤的生长,从而确定了一个可针对性的枢纽,以对抗 ER + 乳腺癌中获得雌激素独立性。
第四单元:酶(12个讲座)酶,全酶,全酶,载脂蛋白,辅因子,辅酶,辅酶,假体,肠道酶,肠道酶,单晶和单晶和非成熟酶,激活能量和过渡性,特定的特定活动,常见的活动,常见的特征,常见的特征,常见的特征,类型,特定的特征,来自极端嗜热和过度嗜好的古细菌和细菌的生物催化剂。的作用:NAD+,NADP+,FMN/FAD,辅酶A,硫胺素焦磷酸盐,吡啶还毒素磷酸盐,lipoic-酸,生物素维生素B12,四氢叶酸和金属离子
莱茵衣藻中的乙酰辅酶a羧化酶(CrACCase)是一种编码三酰甘油(TAG)和脂质(油体)合成的基因。CrACCase基因研究很少,尚未进行过计算机或体内遗传改造。在本研究中,我们为基因组编辑,特别是CrACCase提供了生物信息学精确信息。本研究旨在构建sgRNA并预测CrACCase假定突变蛋白的功能区域。根据分子鉴定结果,可以对最佳的CrACCase(GeneBank XM_001703135)进行计算机遗传改造。本研究中最佳的潜在 sgRNA 构建体为 GCGTCTGCTCAATCACACGGCGG、TTGAGGTCGGAACTCCAGCGG 和 AGGCAATACCCTCAATTGGGTGG,效率值分别为 79.27%、68.25% 和 65.17%。获得的最佳寡核苷酸 sgRNA 具有一个带有 NGG 的原间隔区相邻基序 (PAM) 位点,尤其是 CGG 和 TGG 的形式。工程化的 CrACCase 基因突变的位置位于莱茵衣藻基因组的 XM_001703135.1:1089 区域,尤其是在负链中。预测 CrACCase 蛋白具有 ACC 的羧基转移酶亚基、假定 PCC 的羧基转移酶亚基、酵母乙酰辅酶 A 羧化酶的人源化羧基转移酶结构域和乙酰辅酶 A 羧化酶的结构。 CrACCase 基因中的移码突变的变化影响了残基 D:C 92、95、111 和 114 处配体-蛋白结合位点功能区的结构变化,这些位点是锌离子结合位点。这种结构变化导致 CrACCase 蛋白的功能发生变化。这种生物信息学信息对于将来对 CrACCase 进行体内基因组编辑非常重要,这样就可以获得具有最高 TAG 产量或最高生物柴油(油体)产量的突变体。分子生物学家和生物技术专家可以将对莱茵衣藻中 CrACCase 基因的操纵应用于脂质百分比最高的其他微藻生物,以增加未来的生物能源产量。
图 1 植物中脂肪酸和三酰甘油合成途径的示意图。虚线显示三酰甘油合成中脂肪酸的流动。ACC,乙酰辅酶 A 羧化酶;ACP,酰基载体蛋白;CoA,辅酶 A;DGAT,二酰甘油酰基转移酶;FAB2,脂肪酸生物合成 2;FAD2,脂肪酸去饱和酶 2;FAD3,脂肪酸去饱和酶 3;FAE1,脂肪酸延长酶 1;FATA,脂肪酰基-ACP 硫酯酶 A;FATB,脂肪酰基-ACP 硫酯酶 B;KAS,β-酮酰基-酰基载体蛋白合酶;LMAT,丙二酰辅酶 A/ACP;PC,磷脂酰胆碱; PDCT,磷脂酰胆碱:二酰甘油胆碱磷酸转移酶。
乳腺癌脑转移(BCBM)通常会导致末期诊断,并且由于缺乏脑穿透剂药物而受到阻碍。大脑中的肿瘤依赖于乙酸乙酰辅酶A乙酰辅酶A的转化为乙酰辅酶A合成酶2(ACSS2),这是脂肪酸合成和蛋白乙酰化的关键调节剂。 在这里,我们使用计算管道来识别新型的脑渗透ACSS2抑制剂结合了基于药丸的形状筛选方法与吸收,分布,代谢和排泄(ADME)性质预测。 我们确定了AD-5584和AD-8007的化合物,这些化合物已通过特定结合的ACSS2进行了验证。 用AD-5584和AD-8007处理BCBM细胞会导致菌落形成,脂质储存,乙酰-COA水平和细胞存活的体外显着降低。 在体内脑肿瘤切片模型中,用AD-8007和AD-5584处理可减少预成型肿瘤,并在阻断BCBM肿瘤生长的情况下随着辐射而协同作用。 AD-8007治疗减轻了肿瘤负担和体内延长的生存率。 这项研究确定了对乳腺癌脑转移有效率的选择性脑渗透ACSS2抑制剂。大脑中的肿瘤依赖于乙酸乙酰辅酶A乙酰辅酶A的转化为乙酰辅酶A合成酶2(ACSS2),这是脂肪酸合成和蛋白乙酰化的关键调节剂。在这里,我们使用计算管道来识别新型的脑渗透ACSS2抑制剂结合了基于药丸的形状筛选方法与吸收,分布,代谢和排泄(ADME)性质预测。我们确定了AD-5584和AD-8007的化合物,这些化合物已通过特定结合的ACSS2进行了验证。用AD-5584和AD-8007处理BCBM细胞会导致菌落形成,脂质储存,乙酰-COA水平和细胞存活的体外显着降低。在体内脑肿瘤切片模型中,用AD-8007和AD-5584处理可减少预成型肿瘤,并在阻断BCBM肿瘤生长的情况下随着辐射而协同作用。AD-8007治疗减轻了肿瘤负担和体内延长的生存率。这项研究确定了对乳腺癌脑转移有效率的选择性脑渗透ACSS2抑制剂。
脂肪酸氧化缺陷(FAO 的)中链酰基辅酶 A 脱氢酶缺乏症(中链 A-seal Co-A Dee-HIGH-dra-gen-AZE 缺乏症 - MCAD)是一种脂肪酸代谢障碍。患有 MCAD 的婴儿和儿童生病或长期禁食时,血糖会变得非常低,并且有发生“代谢危机”的风险。代谢危机可能导致癫痫发作、呼吸困难和心脏骤停。这些可能会导致严重的脑损伤或死亡。但是,筛查可以在症状出现之前提供诊断。然后,父母可以预防禁食期,并知道何时寻求早期医疗护理,以防止危机。可以在婴儿的饮食中添加特殊的膳食补充剂,以帮助预防问题。筛查的其他脂肪酸缺陷包括:• 肉碱吸收缺陷 (CUD) • 长链羟基辅酶 A 脱氢酶缺乏症 (LCHAD) • 三功能蛋白质缺乏症 (TFP) • 极长链酰基辅酶 A 脱氢酶缺乏症 (VLCAD)
摘要目的:在多发性硬化症的大鼠模型中,确定辅酶Q10&L-肉碱对少突胶质细胞坏死和髓鞘的协同作用。研究设计:基于实验室的实验研究。研究的地点和持续时间:该研究是在2022年3月至2022年5月与NIH伊斯兰堡合作的12周期间,于2022年3月至2022年在巴基斯坦伊斯兰国际医学院拉瓦尔品第进行了研究。方法:总共五十只雄性Sprague Dawley大鼠分为五个随机组,每个组都有一个独特的治疗计划。虽然第1组接受了标准饮食,但剩下的四组被多发性硬化症诱导,并在12周的时间内给予0.2%的Cuprizone(CPZ)。四周后,将第3组的辅酶Q10/泛氨酸酮(COQ10)的150 mg/kg/天提供,第4组接受了100 mg/kg/kg/day l- carnitine(l car),而第5组则通过两者的组合进行治疗,同时仍接受CPZ。完成为期12周的方案后,牺牲了大鼠,并提取了大脑。H&E染色,以评估少突胶质细胞坏死的任何变化,而Luxol Fast Blue(LFB)染色用于可视化髓鞘中的改变。结果:在控制少突胶质细胞坏死和控制髓磷脂的液泡方面,COQ10和L型车的组合明显好于单个药物,这是ANOVA和F-TEST的证明。因此,强烈建议同时针对患有多发性硬化症患者的两种药物开出两种药物,因为它可能为患者提供更大的优势。结论:这项研究明确地证明,与单独使用相比,将COQ10和L型车一起同时对促进髓鞘性和防止少突胶质细胞坏死具有更大的作用。
ACL:三磷酸腺苷柠檬酸裂解酶; ANGPTL3:血管生成素样蛋白 3; Apo:载脂蛋白; CETP:胆固醇酯转运蛋白; CoA:辅酶 A; HDL:高密度脂蛋白; HMGCR:羟甲基戊二酰辅酶 A 还原酶; IDL:中密度脂蛋白; LDL:低密度脂蛋白; LPL:脂蛋白脂肪酶; mRNA:信使RNA; MTP:微粒体甘油三酯转运蛋白; PCSK9:前蛋白转化酶枯草溶菌素/kexin 9 型; R:受体; VLDL:极低密度脂蛋白。
Schizochytrium sp. HX-308是一种生长速度快、脂质含量高的海洋微藻,具有作为脂质化合物生物合成的微生物细胞工厂的潜力,开发高效的基因编辑工具,发现Schizochytrium sp. HX-308中脂质化合物生物合成的分子靶点具有重要意义。本研究在HX-308中开发了一种高效的基因编辑工具,由根癌农杆菌AGL-1介导。结果表明,随机整合效率达到100%,同源重组效率达到30%左右。此外,还设计了脂质和萜类化合物生物合成的代谢途径。首先,利用强组成型启动子在HX-308中过表达乙酰辅酶A c -乙酰转移酶。随着乙酰辅酶A c-乙酰转移酶的过表达,更多的乙酰辅酶A被用于合成萜类化合物,角鲨烯、β-胡萝卜素和虾青素的产量分别增加了5.4倍、1.8倍和2.4倍。有趣的是,饱和脂肪酸和多不饱和脂肪酸的产量也发生了变化。此外,利用同源重组敲除了催化β-氧化第一步的三种酰基辅酶A氧化酶基因。结果表明,在三个敲除菌株中脂质的产量增加。我们的结果表明,农杆菌介导的转化方法对于功能基因的研究以及将裂殖壶菌开发为生产高价值产品的强大细胞工厂将具有重要意义。
核苷酸中的磷酸基团在DNA和RNA的结构中起重要作用。它为分子提供负电荷,这对于维持DNA双螺旋结构的稳定性很重要。磷酸基团还形成了核酸链的骨干,将单个核苷酸通过磷酸二酯键将其连接在一起。除了它们在DNA和RNA中的作用外,核苷酸在许多其他细胞过程中都起着重要作用。它们参与了富含能量的分子(例如ATP)的合成,ATP被用作细胞过程的能量来源。核苷酸也用作辅酶,它们是有助于酶执行其功能的分子。例如,NAD+和FAD是两个重要的辅酶,它们源自核苷酸[2]。