原子位移的高阈值能量(Ed)[5]、点缺陷的动态退火[6]以及没有传统的栅极绝缘体[7],这些使得它们在辐射环境中也具有吸引力。GaN HEMT 中故意引起的应力场在整个通道中基本是均匀的。这可能是为什么局部应力的概念尚未在文献中研究的原因。另一个原因可能是局部应力的全局平均值很小;这似乎太小而无法影响任何特性。最后,以纳米级分辨率映射机械应力是一项艰巨的任务。所有这些因素使得 GaN HEMT 文献只能研究均匀应力场的作用。但是,关态偏置可能会在电场周围引起高度局部化的机械应力。[8] 器件制造和设计特征也会产生应力局部化。然而,目前还没有人齐心协力绘制机械应力的空间非均匀性图,以研究其对晶体管特性的影响。常用的实验技术,如悬臂[9]、三点弯曲[10]和四点弯曲[11],都无法捕捉到应力局部化。衬底去除[12,13]也用于产生均匀的弯曲应力。本研究的动机来自应力约束效应提供的识别易受辐射区域的机会。我们假设纳米级约束应力(机械热点)可能决定辐射损伤(甚至是操作性能下降)的特定位置成核。例如,HEMT 的栅极漏电被归因于促进肖特基接触金属化相互扩散的局部应力强度。[14]只有少数研究试图控制固有应力以显示对辐射效应的明显影响。 [15,16] 有必要将这些研究扩展到特定类型的辐射和压力。
本文档提供了临时人员指导(ISG),以帮助美国核监管委员会(NRC)员工审查非灯水反应堆(非LWR)设计的建设和运行申请,包括电力和非电力反应堆。本文档中的指南确定了员工审查领域,这对于寻求使用美国机械工程师协会(ASME)锅炉和压力容器代码(ASME代码)的材料可能是必需的,这是“核设施组件建设规则的规则”,第5区第5级,“高温反应堆”,“高温反应堆”(IIII-5节”(IIII-5)(ASME,2017)。III-5节指定了机械性能和允许应力,用于设计高温反应器(HTRS)中的组件。但是,如III-5节HBB-1110(g)所述,ASME代码规则没有提供评估由于腐蚀,传质现象,辐射效应或其他物质不稳定性而导致使用的恶化的方法。此ISG确定了员工应将其视为对非LWR应用程序评估的信息,以审查适用的设计要求,包括环境兼容性,资格和监视计划,用于安全 - 重要的结构,系统和组件(SSC)。审查资格和监视计划所需的实际信息将取决于许多因素,例如植物设计,组件的重要性,特定环境以及在给定领域的研究成熟度。员工应考虑到《联邦法规法规》第10条(10 CFR)第10部分(10 CFR)第50部分,“生产和利用设施的国内许可”,以及针对设计认证的非LWR申请,合并许可,标准设计批准或制造10 CFR第52部分“许可”,“核工厂”,“核工厂”,“核工厂”,认证,认证,和批准的核心批准''',核心,认证,批准,和制造效力。
由于高性能商用现货 (COTS) 计算平台的技术进步,空间计算正在蓬勃发展。太空环境复杂且具有挑战性,具有尺寸、重量、功率和时间限制、通信限制和辐射效应。本论文提出的研究旨在研究和支持在空间系统中使用 COTS 异构计算平台进行智能机载数据处理。我们研究在同一芯片上至少有一个中央处理器 (CPU) 和一个图形处理单元 (GPU) 的平台。本论文提出的研究的主要目标有两个。首先,研究异构计算平台,提出一种解决方案来应对空间系统中的上述挑战。其次,使用新颖的调度技术补充所提出的解决方案,用于在恶劣环境(如太空)中在 COTS 异构平台上运行的实时应用程序。所提出的解决方案基于考虑使用并行任务段的替代执行的系统模型。虽然将并行段卸载到并行计算单元(如 GPU)可以改善大多数应用程序的最佳执行时间,但由于过度使用 GPU,它可能会延长某些应用程序中任务的响应时间。因此,使用所提出的任务模型是减少任务响应时间和提高系统可调度性的关键。基于服务器的调度技术通过保证 CPU 上并行段的执行时隙来支持所提出的任务模型。我们的实验评估表明,与应用程序的静态分配相比,所提出的分配可以将实时系统的可调度任务集数量增加高达 90%。我们还提出了一种使用基于服务器的调度和所提出的任务模型的动态分配方法,该方法可以将可调度性提高高达 16%。最后,本文提出了一个模拟工具,支持设计人员使用所提出的任务模型选择异构处理单元,同时考虑处理单元的不同辐射耐受性水平。
代码 400 – 飞行项目理事会 Sharon Straka 代码 407 – 地球,科学技术办公室 Jacqueline Le Moigne-Stewart 代码 420 – 地球科学项目部 Obadiah Kegege 代码 460 – 探险者和太阳物理项目部 (EHPD) Irving Burt 代码 540 – 机械系统部 Vivek Dwivedi 代码 541 – 材料工程分部 Justin Jones Antonio Moreno 代码 542 – 机械系统分析和模拟分部 Daniel McGuinness Ryan Simmons 代码 546 – 污染和涂层工程分部 Mark Hasegawa Alfred Wong 代码 547 – 先进制造分部 Todd Purser 代码 552 – 低温和流体分部 Matthew Francom Shouvanik Mustafi 代码 553 – 探测器系统分部 John Kolasinski Kevin Denis 代码 554 – 激光与电子光学分部 Anthony Yu Kenji Numata 代码 555 – 微波仪器技术分部Berhanu Bulcha Manohar Deshpande 代码 561 – 飞行数据系统和辐射效应 Kenneth O'Connor 代码 564 – 仪器电子开发分部 Kyle Gregory Gerard Quilligan 代码 592 – 系统工程服务和先进概念分部 Xiaoyi Li 代码 596 – 组件硬件系统分部 Munther Hassouneh Kenneth McCaughey Samuel Price Luke Thomas Luke Winternitz 代码 599 – 任务系统工程分部 Lloyd Purves 代码 665 – 观测天体物理实验室 Edward Wollack Matthew Greenhouse Karwan Rostem 代码 690 – 太阳系探索部 Daniel Glavin 代码 691 – 天体化学实验室 Perry Gerakines 代码 693 – 行星系统实验室 Shahid Aslam 代码 699 – 行星环境实验室 Mahmooda Sultana
学生首次加入研究生课程时将被分配一名导师。但是,这种分配是暂时的,一旦学生了解到自己的兴趣与系内各教员的兴趣如何相吻合,就不应该犹豫更换导师。对于进行研究生研究的学生,研究主管也是他们的学术顾问。在注册未来学期之前,学生必须与导师讨论课程。核材料研究本指南适用于对辐射材料科学、核材料、探测器材料和相关主题的课程和研究感兴趣的核工程和放射科学研究生。材料选项主要针对希望通过博士学位继续在该领域学习的学生。本文件的目的是帮助您选择一系列具有中期和长期价值的课程,包括 NERS 系和整个密歇根大学。附件课程计划提供 (a) 典型的材料本科课程、(b) 理学硕士/科学与工程硕士课程示例、(c) 双 NERS-MSE 课程和 (d) 博士学位要求。虽然可以安排 NERS 的终端一年制硕士课程,但目前不建议这样做。各种研究主题包括:• 超高温气体反应堆材料 • 奥氏体不锈钢的辐照辅助应力腐蚀开裂 • 陶瓷和矿物中的辐射诱导非晶化 • 超临界水中辐照材料的行为 • 金属玻璃中的变形和结构转变 • 新型图案化纳米结构的辐射处理 • 通过中子散射表征材料 • 使用离子模拟中子辐照 • 非常高剂量的辐射效应 • 裂变和聚变核材料的多尺度计算机模拟 • TRISO 燃料中裂变气体释放的计算机模拟 • 研究闪烁体材料脉冲形状辨别的计算能力 • 理解电子和光电设备中辐射退化的机制:多时间尺度模型
摘要。上升的温室气体浓度和全球气溶胶排放量的下降正在导致能量以越来越多的速度积聚在地球气候系统中。对地球能量不平衡和海洋变暖的增加的不完全理解可降低准确准备近期气候变化和相关影响的能力。在这里,基于卫星的地球能量预算和海洋表面温度的观察与1985 - 2024年的ERA5大气再分析相结合,以提高人们对地球净能量不平衡变化和导致海洋表面变暖的物理理解。将地球能量失衡从2001 - 2014年的0.6±0.2 wm-2增加到2015 - 2023年的1.2±0.2 wm-2,主要是由于吸收的与海洋中与云辐射效应相关的吸收阳光的增加。观察到的吸收阳光的增加并未被ERA5完全捕获,并且由云层在全球海洋上反射的阳光的广泛减少确定。强烈有助于减少阳光的反射,但韦德尔海和罗斯海最近的南极海冰下降也是最近的南极海冰。在年际时间尺度(2000-2023)中,发现了每年1 Wm-2增加地球能量不平衡的每年增加0.1 o c/yr的增加。只有在混合层下方的热通量中没有并发响应时,才可以从简单的海洋混合层能量预算来理解这一点。基于这种简单的能量平衡方法和观察性证据,发现从2022年到2023年的近乎全球海洋表面变暖在0.27 o c上,与1.85±0.2 wm-2的较大能量失衡在物理上是一致的与从la nina到El Ni〜NO条件的过渡有关的混合层下方的通量。对地球能源预算的驱动因素的这种新解释及其与海洋变暖的联系可以提高对近期变暖和气候预测的信心。
电子设备与电路、控制与自动化、通信、信号处理、计算机技术、电力系统、电力电子、机器与驱动器。2. 计算机技术:计算机网络、计算机架构、SoC 和 VLSI 设计和测试、传感器网络、嵌入式系统、并行和分布式处理、大数据分析、VLSI 的 CAD、计算机视觉和图像分析、生物识别、模式识别、机器学习、数据分析、神经网络、人工智能和软计算、多媒体系统、图论、系统生物学、生物信息学、医学信息学、计算语言学、音乐和音频处理、生物医学信号/图像处理、辅助技术、计算神经科学、脑机或人机界面、医疗电子/医疗技术、网络安全、网络物理安全。 3. 半导体器件、材料、制造、特性、VLSI 设计、光子学、混合信号电路设计、射频电路设计、NEMS、神经形态、纳米电子学、非易失性存储器技术、SRAM、DRAM、量子材料、电子和计算、光伏、传感器、等离子体、紧凑建模、自旋电子学、MEMS、模拟电路设计、电路测试、容错、故障安全设计、微电子和功率器件、电路器件交互、电路器件优化、3D IC、3D 芯片、先进半导体封装、器件可靠性、柔性和可印刷电子、红外光电探测器、化学传感器、能量收集器和存储、光电子学、功率半导体器件和宽带隙半导体、量子材料、生物传感器、生物医学器件、纳米制造、新型光学和电子材料的生长和自组装、集成纳米级系统、计算电磁学、传感器:光纤和芯片、生物光子学和生物成像、固态成像、CMOS图像传感器、生物启发视觉系统、神经形态成像、模拟/数字电路设计、光电子学和光子学、用于量子计算的低温硅基量子比特和CMOS的建模和表征、RF-CMOS器件和电路、CMOS和GaNHEMT器件的可靠性、CMOS中的辐射效应、半导体硬件安全、微流体学、
缩写 定义 缩写 定义 AF 空军 NASA 美国国家航空航天局 BGA 球栅阵列 NEPAG NASA 电子零件保证组 BN 贝叶斯网络 NEPP NASA 电子零件和包装(程序) BoK 知识体系 NESC NASA 工程和安全中心 CMOS 互补金属氧化物半导体 NODIS NASA 在线指令信息系统 COTS 商用现货 NPR NASA 程序要求 CPU 中央处理单元 NRO 国家侦察办公室 DDR 双倍数据速率 NSREC 核与空间辐射效应会议 DLA 国防后勤局 OCE 总工程师办公室 DMEA 国防微电子活动 OGA 其他政府机构 DoD 国防部 PIC 光子集成电路 DoE 能源部 POC 联系点 EEE 电气、电子和机电 PoF 故障物理学 ETW 电子技术研讨会 RF 射频 FPGA 现场可编程门阵列 RH 抗辐射 GaN 氮化镓 RHA 抗辐射保证 GIDEP 政府工业数据交换计划 SAPP 空间资产保护计划 GPU 图形处理单元 SDRAM 同步动态随机存取存储器 GRC 格伦研究中心 SEE 单事件效应 GSFC 戈达德太空飞行中心 SiC 碳化硅 GSN 目标结构化符号 SMA 安全与任务保障 HQ 总部 SMC 空间与导弹系统中心 IC 集成电路 SOA 安全操作区 IEEE 电气和电子工程师协会 SoC 片上系统 JPL 喷气推进实验室 SRAM 静态随机存取存储器 JSC 约翰逊航天中心 SSAI 科学系统与应用公司 LaRC 兰利研究中心 STMD 空间技术任务理事会 LGA 陆地栅格阵列 STT 自旋转移力矩 MAPLD 军用和航空航天可编程逻辑器件(研讨会) SysML 系统建模语言 MBMA 基于模型的任务保障 TID 总电离剂量 MRAM 磁性随机存取存储器 TSV 硅通孔 MSFC 马歇尔太空飞行中心
缩写 定义 缩写 定义 AF 空军 NASA 美国国家航空航天局 BGA 球栅阵列 NEPAG NASA 电子零件保证组 BN 贝叶斯网络 NEPP NASA 电子零件和包装(程序) BoK 知识体系 NESC NASA 工程和安全中心 CMOS 互补金属氧化物半导体 NODIS NASA 在线指令信息系统 COTS 商用现货 NPR NASA 程序要求 CPU 中央处理单元 NRO 国家侦察办公室 DDR 双倍数据速率 NSREC 核与空间辐射效应会议 DLA 国防后勤局 OCE 总工程师办公室 DMEA 国防微电子活动 OGA 其他政府机构 DoD 国防部 PIC 光子集成电路 DoE 能源部 POC 联系点 EEE 电气、电子和机电 PoF 故障物理学 ETW 电子技术研讨会 RF 射频 FPGA 现场可编程门阵列 RH 抗辐射 GaN 氮化镓 RHA 抗辐射保证 GIDEP 政府工业数据交换计划 SAPP 空间资产保护计划 GPU 图形处理单元 SDRAM 同步动态随机存取存储器 GRC 格伦研究中心 SEE 单事件效应 GSFC 戈达德太空飞行中心 SiC 碳化硅 GSN 目标结构化符号 SMA 安全与任务保障 HQ 总部 SMC 空间与导弹系统中心 IC 集成电路 SOA 安全操作区 IEEE 电气和电子工程师协会 SoC 片上系统 JPL 喷气推进实验室 SRAM 静态随机存取存储器 JSC 约翰逊航天中心 SSAI 科学系统与应用公司 LaRC 兰利研究中心 STMD 空间技术任务理事会 LGA 陆地栅格阵列 STT 自旋转移力矩 MAPLD 军用和航空航天可编程逻辑器件(研讨会) SysML 系统建模语言 MBMA 基于模型的任务保障 TID 总电离剂量 MRAM 磁性随机存取存储器 TSV 硅通孔 MSFC 马歇尔太空飞行中心
日本国家量子科学技术研究院 (QST) 致力于通过与量子科学技术相关的研究和开发创造和提供新价值,从而为实现经济、社会和环境和谐的可持续未来社会做出贡献。QST 的独特之处在于它基于量子科学和技术推动从能源开发到生命科学和医学的广泛研究和开发,并拥有各种大型研发设施和设备,包括量子束设施、聚变能源设施和研究医院。QST 的世界级大型研发设施和设备不仅广泛应用于 QST 内部的研发,还被大学和其他机构广泛使用,为国家研究和开发机构所要求的“研究成果最大化”做出了贡献。量子科技中心被指定为国家量子技术创新中心中的基础量子技术中心和量子生命研发中心,推动量子设备关键材料量子材料的研究和开发,以及将量子技术与生命科学和医学联系起来的量子生命技术的使用。此外,我们被指定为核聚变能源创新战略下的核聚变技术创新中心,在“在地球上创造太阳!”的口号下,为实现核聚变能源发电而进行研究和开发。在生命科学和医学领域,我们旨在通过重离子癌症放射治疗、靶向放射性核素治疗和用于诊断痴呆症和其他疾病的成像技术,为实现健康长寿社会做出贡献。此外,QST 已被指定为核心先进辐射应急医疗支持中心,并从事与辐射暴露医学和辐射效应相关的技术开发和人力资源培训。利用迄今为止培育的量子光束生成技术开发和安装的3 GeV同步辐射装置NanoTerasu将于2024年4月开始创造创新材料和设备并将其应用于工业。QST的第二个中长期计划于2023年4月开始。通过进一步升级迄今为止建立的世界最先进、高性能的大型研发设施及其基础技术,QST旨在通过我们与日本和海外研究人员之间的合作创造和设施共享来促进创新研究和开发,并不仅要在量子科学技术方面,而且在其他广泛领域也处于世界领先地位。
