以下是 GaN 半导体器件物理学家、工艺工程师、RF/微波设计师、航空航天工业专业人士、辐射效应专家、PM&P 专家、电子设备工程师、研究人员和科学家,他们为本文档的制定提供了帮助。他们参加每周的电话会议,为团队工作做出了贡献,并提出了许多有益的建议。他们贡献了集体智慧、想法、建议和意见。如果没有他们的服务,这些指南的效果会大打折扣。非常感谢他们的帮助。Assad, Chahriar 博士 波音公司技术研究员 Bole, Kenneth 高级研究工程师 空军研究实验室 新墨西哥州科特兰空军基地 Boutros, Karim 博士高级技术鉴定工程师 波音公司 Buttari, Dario 高级工程师 微电子工程师 诺斯罗普·格鲁曼公司 Cantarini, Bill 创始人 HiRel Component Solutions, LLC Carlos, Zenon F. 组件工程师 – 射频设备 波音研究与技术公司
• LX7730 遥测控制器 - 新数据表 • LX7712 可编程限流电源开关评估板现已上市 • Sub-QML FPGA 信息现已上线 • 文档更新:RT ProASIC3、RTAX 数据表和 RT FPGA 手册 • 将 MathWorks FIL 工作流程与 Microchip RTG4™ FPGA 开发套件集成 • Vectron 的 DOC203679、Rev F 和 OS-68338、Rev P 为业界提供小型化太空合格时钟 • Microchip 宣布 ATMX150RHA ASIC 技术的 DLA SMD 编号 • Libero® SoC Design Suite v12.4 版本支持 RT PolarFire® FPGA • 适用于航天和航空应用的高性能多轴电机控制 • 耐辐射微控制器 - 系统错误管理通过 SAMBA 接口实现飞行中系统恢复 • 使用 RH 对 RT FPGA 进行飞行中重新编程微控制器 • 工程师对辐射效应的看法,第 2 部分:BJT 和 MOSFET 中的 SEE • RTG4 FPGA 产品变更通知和客户通知 • 事件
已进行了可调电流限制范围的电路模拟,组件折衷,组件辐射测试和硬件面包板的几个迭代,以确定供应渠道配置,具有满足要求的潜力。这导致了Fehler章中概述的SPS架构!Verweisquelle Konnte Nicht Gefunden Werden。使用选定的组件,将体系结构转移到PCB设计中,即示意图和布局,如第3章进行了PCB制造和组装的三个迭代进行调试和测试。最终面包板用作SPS示范器进行性能和环境测试。实验室和环境测试。测试设置,结果和数据评估在第5章中显示。总而言之,已经实现了脱危活动的目标,并且已经证明了SPS概念的可行性。SPS模块将非常适合用于提供商业和潜在辐射敏感零件的应用。SPS设计已被制定以应对辐射效应。已经建立了有关SPS飞行模型的进一步发展步骤的明确计划。
提出的活动领域的概述:参见(单个事件效应)对COTS设备的测试和可靠性分析分析对在UCL Louvain-La-Neuve辐照的电子设备的长期可靠性(BE)活动领域将取决于对组件工程的基本知识的发展,产品保证原理以及对EEE EEE组合对EEE EEE的辐射效应的基本知识。 尤其是支持辐射测试运动的支持,包括开发测试设置和对EEE组件的随后数据分析,尤其是针对COTS设备的EEE组件,重点是在UCL Cyclone重离子设施中进行的SEE SEE SEE SEE SEE SEE进行,这是用于在不同类型的conconeration Evalence and Intrications consonic conconization and Conconization consications consications consications and Conticalization contications and Conconization的contications consications的表现。 对重型离子测试提交的COTS设备的可靠性评估:SEL(单个事件锁存)的影响,高电流事件和单个事件功能中断零件的长期可靠性。 最佳工业实践对使用脉冲激光测试的运作和开发,以模拟空间辐射对微电子设备的影响。 对标准化活动的贡献,从而改善了现有的单一事件效果测试指南和测试方法。提出的活动领域的概述:参见(单个事件效应)对COTS设备的测试和可靠性分析分析对在UCL Louvain-La-Neuve辐照的电子设备的长期可靠性(BE)活动领域将取决于对组件工程的基本知识的发展,产品保证原理以及对EEE EEE组合对EEE EEE的辐射效应的基本知识。尤其是支持辐射测试运动的支持,包括开发测试设置和对EEE组件的随后数据分析,尤其是针对COTS设备的EEE组件,重点是在UCL Cyclone重离子设施中进行的SEE SEE SEE SEE SEE SEE进行,这是用于在不同类型的conconeration Evalence and Intrications consonic conconization and Conconization consications consications consications and Conticalization contications and Conconization的contications consications的表现。对重型离子测试提交的COTS设备的可靠性评估:SEL(单个事件锁存)的影响,高电流事件和单个事件功能中断零件的长期可靠性。最佳工业实践对使用脉冲激光测试的运作和开发,以模拟空间辐射对微电子设备的影响。对标准化活动的贡献,从而改善了现有的单一事件效果测试指南和测试方法。
摘要 — 基于 SRAM 的现场可编程门阵列 (FP-GA) 已在航空航天应用中使用了十多年。遗憾的是,这些设备的一个显著缺点是它们对辐射效应的敏感性,这会导致存储器元件中的位翻转和半导体中的电离诱发故障,通常称为单粒子翻转 (SEU)。对基于 SRAM FPGA 的安全关键应用进行早期可靠性分析将使设计人员能够开发出符合设计要求(例如 DO-254 标准)的更可靠、更强大的设计。我们提出了一种基于概率模型检查的方法来分析此类设计的可靠性和可执行性,以指导设计决策。概率模型检查是一种众所周知的形式验证技术,其主要优点是分析详尽,从而可以对时间逻辑查询给出数值精确的答案,这与离散事件模拟形成鲜明对比。在所提出的方法中,从系统的高级描述开始,从提取的控制数据流图 (CDFG) 构建马尔可夫 (奖励) 模型。然后使用 PRISM 模型检查器工具自动验证各种可靠性和可执行性相关属性。
(865) 298-5901 兴趣:主要兴趣包括聚变工程/材料研究和裂变燃料开发。重点是热工水力学、CFD、传热和中子学。其他兴趣包括电力转换技术、高温材料、物理和化学气相沉积、电子束和加速器、粒子传输和辐射损伤。教育:博士核工程,1989 年 8 月 宾夕法尼亚州立大学 核工程硕士,1984 年 8 月 宾夕法尼亚州立大学 核工程学士,1982 年 5 月 宾夕法尼亚州立大学 相关 聚变公私合作伙伴关系协调员 经历 聚变能源创新网络 INFUSE 主任 橡树岭国家实验室 2020 年至今 杰出科学家 – 聚变能源部门 聚变技术组 橡树岭国家实验室 2015 – 2020 杰出成员技术人员 – 电磁和辐射效应模拟 桑迪亚国家实验室,1353 部 2013 - 2015 杰出成员技术人员——面向等离子体的组件和材料的设计和测试 桑迪亚国家实验室,1658 部 1994 年 11 月 - 2013 年1994
I. 引言 蒙特卡罗 (MC) 工具广泛应用于辐射对电子产品的影响 [1],尤其是高能加速器应用。对于后者,用于模拟辐射效应的 MC 代码主要以两种互补的方式使用:第一,用于模拟加速器周围产生的复杂辐射环境 [2]–[4];第二,用于模拟此类辐射环境与微电子元件之间的相互作用。对于单粒子效应 (SEE),第二种类型的模拟涉及对微米体积中逐个事件的能量沉积进行评分,代表 SEE 敏感体积 (SV)。相对于互补实验数据,此类模拟的关键附加值在于,它们可以提供加速器环境中存在的非常广泛的粒子和能量的 SEE 概率,而这些粒子和能量通常无法通过实验获得。在欧洲核子研究中心的辐射到电子 (R2E) 项目 [5] 中,SEE MC 模拟被广泛用于模拟高 Z 材料对 SEE 响应能量依赖性的影响 [6]、重离子核相互作用的影响 [7]、低能质子的贡献以及其他单带电粒子
随着晶体管特征尺寸的减小,HE 对高能粒子的敏感性会增加 [1-3]。由于电子系统广泛用于恶劣环境,文献中对缓解辐射影响的技术进行了大量的研究 [4-7]。可以从制造工艺修改到不同的设计实现来探索辐射加固策略。掺杂分布的修改、沉积工艺的优化和不同材料的使用都是众所周知的工艺加固辐射 (RHBP) 技术的例子。然而,除了成本较高之外,RHBP 通常比最先进的 CMOS 工艺落后几代,导致性能低下。另一方面,辐射加固设计 (RHBD) 已被证明可有效增强对辐射效应的抵抗力 [7]。这些技术可以在从电路布局到系统设计的不同抽象级别上实现。单粒子效应 (SEE) 的产生机制与集成电路 (IC) 的物理布局密切相关,例如,晶体管 pn 结中的能量沉积和电荷收集之间的关系。因此,可以在电路布局级别应用多种硬化方法,例如封闭布局晶体管 (ELT)、保护环、虚拟晶体管/栅极或双互锁存储单元 (DICE) [6-9]。
未来的太空任务可以从机载图像处理中受益,以检测科学事件、产生见解并自主响应。这一任务概念面临的挑战之一是传统的太空飞行计算能力有限,因为它是从更古老的计算中衍生出来的,以确保在太空的极端环境下(特别是辐射)的可靠性能。现代商用现货处理器,如 Movidius Myriad X 和 Qualcomm Snapdragon,在小尺寸、重量和功率封装方面有显著改进;它们为深度神经网络提供直接硬件加速,尽管这些处理器没有经过辐射加固。我们在国际空间站 (ISS) 上的惠普企业星载计算机-2 托管的这些处理器上部署了神经网络模型。我们发现,Myriad 和 Snapdragon 数字信号处理器 (DSP)/人工智能处理器 (AIP) 在所有情况下都比 Snapdragon CPU 速度更快,单像素网络除外(DSP/AIP 通常快 10 倍以上)。此外,通过量化和移植我们的喷气推进实验室模型而引入的差异通常非常低(不到 5%)。模型运行多次,并部署了内存检查器来测试辐射效应。到目前为止,我们发现地面和 ISS 运行之间的输出没有差异,也没有内存检查器错误。
在质子辐照下,使用扫描电子显微镜 (SEM) 研究了来自同一制造商的三种 SDRAM,其技术节点尺寸分别为 110、72 和 63 nm。表征了辐射引起的故障,并比较了不同部件类型之间的故障。被测设备 (DUT) 经过质子辐照,并以卡住位和单比特翻转 (SBU) 的形式经历了单粒子效应 (SEE)。对具有 SBU 并在辐照期间卡住的比特的数据保留时间进行分析,结果显示保留时间退化模式相似,这表明这三种部件类型中的 SBU 和卡住位可能是由相同机制引起的。还在辐照前后进行了详细的数据保留时间分析,以研究辐照后和退火一段时间后数据保留时间的变化。发现最大的辐射引起的保留时间损失发生在退火过程中,但辐照后直接受影响最小的比特的数据保留时间随着退火时间而减少。 SEM 成像显示,不同测试部件类型之间的存储单元结构存在差异。节点尺寸最大的器件对辐射最敏感,无论是 SEE 还是累积辐射效应。