旨在研究太空天气对卫星系统的影响的研究揭示了太空天气的几个重要影响。其中一些效果包括:地磁诱导的电流:这些电流可能会破坏卫星系统在低地球轨道上的操作,因为它们靠近地球表面。由于表面充电和电弧引起的辐射效应:来自各种来源的辐射会损坏卫星系统,这就是为什么在卫星设计中需要具有辐射保护的组件。辐射对人类健康的影响。电离层对卫星通信和导航的影响:电离层中的湍流可能会导致电离层等离子体密度的不一致,这可能会折射传入的无线电信号并引起电离层干扰。热圈效应:磁性风暴期间高层大气的膨胀会产生大气阻力,这可能会导致海拔高度或卫星轨道的干扰[10]。
随着 LHC 加速器的建成,高能物理电子学开启了新的篇章。这种高亮度强子对撞机在加速质子迎头碰撞点附近建造的探测器系统中产生了前所未有的辐射背景,这对电子设备的可靠功能尤其不利。例如,表 1 描述了 LHC 两个通用探测器系统之一(ATLAS)的辐射背景,图 1 显示了另一个(CMS)的横向视图,以说明不同专用探测器层的位置。90 年代初,人们已经清楚地认识到,跟踪器的电子设备需要具有前所未有的抗辐射能力,而 HEP 社区必须获得有关电子设备和电路中辐射效应的新能力。随着高亮度 LHC 升级的批准,辐射背景增加了 10 倍,事情变得更具挑战性。
本期本期正在征求论文,展示了与气溶胶辐射强迫和空气质量影响的科学和政策有关的最新结果。总体目标是突出气溶胶研究与政策决策的交集的最新进展。潜在的主题包括但不限于气溶胶和气雾剂前体排放的趋势,使用原位和遥控传感器对气溶胶浓度的趋势进行长期监测,对气雾剂排放的辐射强迫和空气质量影响的过程研究以及气溶胶直接辐射效应和气溶胶互动的建模。测量结果与建模结果之间的联系以及他们如何了解政策决策特别适合本期特刊。政策决策的范围可能从改善空气质量或太阳辐射管理通过海洋云增光效果的可行性范围。气溶胶撞击的量表范围从局部到区域或全球。
短期课程分为四个部分,均包含入门材料和高级主题。第一部分介绍电子辐射效应的基本机制,重点介绍各种设备和技术的位移损伤。第二部分重点介绍 MOS 晶体管中的总电离剂量引起的退化,讨论这些效应随着 CMOS 制造技术的进步而演变。第三部分介绍电子器件中的单粒子效应,并讨论用于在实验室中重现应用中观察到的故障机制的测试方法。最后一门课程介绍了对光子材料、设备和集成电路的影响,重点是光学材料、光纤、图像传感器和探测器像素阵列。下面提供了每个讲座的更详细描述。所涵盖的主题应能为该领域的新手以及经验丰富的工程师和科学家提供最新的材料和见解。
摘要 - 电子产品越来越容易受到硅内能量颗粒相互作用的影响。为了在辐射效应下提高电路可靠性,在VLSI系统的设计流中采用了几种硬化技术。本文提出了逻辑门中的PIN分配优化,以减少单个事件瞬态(SET)横截面并提高轨内软率。信号概率传播用于通过重新交换或引脚交换将最低概率分配给电路最敏感的输入组合。细胞优化的软率最高可降低48%。对于分析的算术基准电路,优化的细胞网列在设置的横截面和轨内软校正速率上可以在电路设计区域内无需成本降低8%至28%。另外,由于引脚交换是一种布局友好的技术,因此优化不会影响细胞放置,并且可以与逻辑和物理合成中的其他硬化技术一起采用。
摘要:辐射剂量对设备和材料的影响的研究是放射生物学、太空任务、微电子学和高能物理等多个领域的热门话题。本文提出了一种基于辐射变色薄膜剂量测定的新方法,用于辐射硬度保证测试中的实时剂量评估。该方法可以关联设备暴露于辐射效应(故障和/或损坏)时的辐射剂量。在之前的研究中,已经证明基于光纤和光谱仪的系统可以实时评估辐射变色薄膜的剂量。当前的研究不仅验证了我们之前的结果,而且表明可以将新方法应用于实际辐射环境,以实时测量辐射硬度保证测试中传送到设备的剂量。这种新型剂量计可用于不同的辐射环境,剂量范围很广,从几 Gy 到几 MGy。通过改变放射变色薄膜类型和/或用于分析的参数可以达到这种高灵敏度。
在设计光子的能量摩托明关系的同时,是许多线性,非线性和量子光学现象的关键,但可以通过采用光子浴本身的拓扑结构来实现一组新的光效率。在这项工作中,我们根据Su-Schrieffer-Heeger模型的光子类似物,实验研究了与超材料波导耦合的超导量子的特性。我们探索了与这种波导相连的Qubits的拓扑诱导特性,从定向量子量子 - 光子结合状态到拓扑依赖性的合作辐射效应范围。在此波导系统中添加Qubits还可以对形成有限波导系统形成的拓扑边缘状态进行直接量子控制,例如在构建拓扑受保护的量子通信通道时很有用。更广泛地说,我们的工作证明了拓扑波导系统在综合和研究具有异国情调长期量子相关的多体状态的机会。
摘要:几十年来,质子辐照实验一直被用作研究多种材料辐射效应的替代方法。质子加速器的丰富性和可及性使这种方法便于进行加速辐射老化研究。然而,开发具有更高辐射稳定性的新材料需要大量的模型材料、测试样品,并非常有效地利用加速器光束时间。因此,最佳束流或粒子通量的问题至关重要,需要充分了解。在这项工作中,我们使用 5 MeV 质子在砷化镓样品中引入位移损伤,并使用了广泛的通量值。正电子湮没寿命谱用于定量评估辐射诱导的存活空位的浓度。结果表明,质子通量在 10 11 和 10 12 cm − 2 .s − 1 之间会导致 GaAs 半导体材料中产生类似的单空位浓度,而通量进一步增加会导致该浓度急剧下降。
Jyväskylä大学(JYFL-ACCLAB)的加速器实验室成立于1992年,已发展成为一个世界有的多用户设施,有四个加速器为大型国家和国际用户提供离子,电子和光子光束。JYFL-ACCLAB的使用者代表了多学科的领域范围,探讨了对核和原子物理学,核天体物理学和基本相互作用的研究,电子和材料对辐射的影响,离子源开发和等离子体物理,纳米科学,材料表征和薄膜研究。该设施还为工业合作伙伴提供了广泛的分析,辐射和专家咨询服务。JYFL-ACCLAB是一家真正的国际用户驱动的研究基础设施,是欧洲领先的离子光束设施之一,并向所有研究人员完全开放。辐射效应设施为欧洲航天局和欧洲卫星和航空航天行业提供服务。ALD Center Finland-原子层沉积和蚀刻的研究基础设施