摘要。自从第一个耦合模型对比项目版本6(CMIP6)模拟释放以来,讨论最多的主题之一是某些模型的有效气候灵敏度(EC)较高,与以前的CMIP相比,CMIP6中EC值的范围更高。对ECS的重要贡献是云气候反馈。尽管在过去的几十年中,气候模型一直在不断开发和改进,但云的现实代表仍然具有挑战性。云会导致建模的EC中的大型不确定性,因为云属性的预计变化和云反馈也取决于当前的模拟场。在这项研究中,我们研究了总共51 CMIP5和CMIP6模型的云物理和辐射特性的表示。ecs用作简单的指标来对模型进行分组,因为物理云对变暖的敏感性与云反馈密切相关,而云反馈又对EC有很大的贡献。在将来的情景模拟中,ECS组分析了云属性的预测变化。为了帮助解释预计的变化,还分析了历史模拟的模型结果。结果表明,净云辐射效应的差异是对三个模型组中变暖的反应的差异是由一系列云制度而不是单个区域的变化驱动的。在极地区域中,高ECS模型显示,由于变暖,云的净冷却效应的增加较弱,而不是低ECS模型。同时,高ECS模型显示出热带海洋和亚热带层流量区域的云冷却效果的下降,而低ECS模型的变化很小,甚至几乎没有变化。在南大洋上,低-ECS模型比高ECS模型对变暖的净云辐射效应具有更高的灵敏度。
摘要。Brown carbon (BrC) is an absorbing organic aerosol (OA), primarily emitted through biomass burn- ing (BB), which exhibits light absorption unique to both black carbon (BC) and other organic aerosols.Despite many field and laboratory studies seeking to constrain BrC properties, the radiative forcing (RF) of BrC is still highly uncertain.To better understand its climate impact, we introduced BrC to the One-Moment Aerosol (OMA) module of the GISS ModelE Earth system model (ESM).We assessed ModelE sensitivity to primary BrC processed through a novel chemical aging scheme and to secondary BrC formed from biogenic volatile organic compounds (BVOCs).初始结果表明,BRC通常贡献0.04 Wm-2的辐射效应最高的辐射效应。Sensitivity tests indicate that explicitly simulating BrC (separating it from other OAs), including secondary BrC, and simulating chemical bleaching of BrC contribute distinguishable radiative effects and should be accounted for in BrC schemes.This addition of prognostic BrC to ModelE allows greater physical and chemical complexity in OA representation with no apparent trade-off in model performance, as the evaluation of ModelE aerosol optical depth against Aerosol Robotic Network (AERONET) and Moderate Res- olution Imaging Spectroradiometer (MODIS) retrieval data, with and without the BrC scheme, reveals similar skill in both cases.Thus, BrC should be explicitly simulated to allow more physically based chemical compo- sition, which is crucial for more detailed OA studies like comparisons to in situ measurement campaigns.我们在本文结尾的Modele内包含了BRC代表的最佳实践摘要。
3 EUROfusion PMU,Garching 85748,德国 摘要:日本和欧盟的 A-FNS 和 IFMIF-DONES 中子源计划正在推进,目标是在 2030 年开始运行。这些设施将在实现 DEMO 中发挥核心作用。本文将讨论作为用户的材料科学家在 A-FNS 和 IFMIF-DONES 计划中的作用,以鼓励他们加强对计划的承诺。首先介绍材料科学家和设计者在 IFMIF 项目中过去的合作。然后讨论中子源在 DEMO 路线图中的作用,为此要求材料科学家发挥领导作用。本文还强调需要开发先进材料并通过应用中子源获得对聚变中子辐射效应的基本理解。 关键词:D-Li 中子源、A-FNS、IFMIF-DONES、DEMO 路线图 1 .
按研究基础设施名称的字母顺序列出。阿尔托冰池阿尔托大学阿尔托冰与波浪池是一个 40 米 x 40 米的水池,可以产生模型比例的海冰和波浪。它是世界上面积最大的冰池,也是世界上唯一一个可以同时进行冰和波浪实验的宽池。该水池是一个重要的国家和国际设施。气候变暖导致冰况发生变化,并带来了利用冷海区域的新方法。我们的水池在加速绿色转型和减轻冷海地区海上作业相关风险的研究中发挥着重要作用。更详细地说,我们研究例如冰中的海上风力涡轮机、冰区航行船和冰力学。该水池是多功能的,也可用于公开水域测试。除了我们在阿尔托的团队和我们的合作者之外,学生和工业合作伙伴也使用该水池。于韦斯屈莱大学加速器实验室 于韦斯屈莱大学 于韦斯屈莱大学加速器实验室 (JYFL-ACCLAB) 成立于 1992 年,现已发展成为一个世界知名的多用户设施,拥有四台加速器,为大量国内外用户提供离子、电子和光子束。JYFL-ACCLAB 的用户来自多个学科领域,涉及核物理和原子物理、核天体物理和基本相互作用、电子和材料中的辐射效应、离子源开发和等离子体物理、纳米科学、材料特性和薄膜研究。该设施还为工业合作伙伴提供广泛的分析、辐照和专家咨询服务。JYFL-ACCLAB 是一个真正国际化的用户驱动型研究基础设施,是欧洲领先的离子束设施之一,向所有研究人员完全开放。辐射效应设施服务于欧洲航天局和欧洲卫星和航空航天工业。
然而,LDE 对辐射效应的影响尚不清楚,很少有论文关注这一问题,且有限的研究表明器件的辐射敏感性与版图有关。Rezzak 等人 [6] 首次研究了 90 nm 体硅 NMOS 器件中版图相关的总电离剂量 (TID) 响应,结果表明,由于浅沟槽隔离 (STI) 引起的压应力较弱,因此辐射诱导漏电流随栅极至有源区间距的增加而增大。对于 45 nm 应变 SOI RF nFET,不同的源/漏接触间距和栅指间间距可能导致 RF 性能和 TID 退化之间的权衡 [7]。很显然,关于 LDE 对纳米级器件辐射响应的实验研究还很有限,需要进一步研究。
技术计划将于7月25日星期二至7月28日(星期五)举行。NASA Goddard太空飞行中心的Jonny Pellish是技术计划主席。Jonny和他的技术委员会将选择9届口头演讲会议和海报会议(Jeff George,Los Alamos National Laboratory - Hoster -Poster Seaper)的杰出贡献论文,该论文支持所有会议。此外,技术委员会将为辐射效果数据研讨会(Andrea Coronetti,Cern - Redw主席)选择一组质量演示文稿。研讨会海报将对电子和光子设备和系统以及新的仿真或测试设施呈现辐射效应数据。最后,乔尼(Jonny)计划邀请三位引人入胜的演讲嘉宾进行一般兴趣演讲。
是。我们感兴趣的任何类型的解决方案都对空间的辐射效应很重要。有些公司已经在寻找Rad Pack以包装特殊包装,从而在极端环境和辐射方面提高了性能。请注意,如果您提议将某种有机糊放在上面,则必须确保您有一个非常有说服力的理由,以便它起作用。建议您在提案中提供足够的展览。例如,审查从核和太空辐射效果会议(NSREC)发布的数据研讨会。我的同事发布了他们对不同COT和不同电子组件的表征。您只需访问他们的网站去那里,然后选择一个容易受到辐射影响的部分,并且可以用于提案,查看跟踪并应用您的技术。TX08.X-其他参考和仪器 - A3.05-范围1-确定掺入
热带卷心从深对流核向外流动(Deng等,2016)或原位形成,从地球表面吸收了长波辐射,并在较冷的温度下重新散发出来,从而降低了外向的长波辐射和加热大气层(Hartmann等人,Hartmann等,2001年)。在全球气候模型(GCMS)中的cirrus表示差异(源自多样化的模型动态和物理参数化)是限制热带和云气候反馈的长波辐射预算的不确定性的主要来源(Sherwood等,2020)。在这里,我们量化了热带长波云辐射效应(CRE)的可变性,这些变化源于一组全球防暴模拟(GSRMS)模型微物理学的差异,并且我们确定了改善冰球物理学和更真实地模拟的热带热带cirrus的重要途径。
等式(33.5) 在 0 区域有效。1 ≲ βγ ≲ 1000,精度为百分之几。下面讨论小的修正。这是质量阻止本领;符号定义和值在表 33.1 中给出,单位为 MeV g − 1 cm 2 。从图33.2 可以看出,以这种方式定义的 ⟨ dE/dx ⟩ 对于大多数材料来说大致相同,随着 Z 缓慢减小。线性阻止本领,以 MeV/cm 为单位,为 ρ ⟨ dE/dx ⟩ ,其中 ρ 是密度,单位为 g/cm 3 。在 βγ ∼ 0 时。1 时,抛射速度与原子电子“速度”相当(第33.2.6 节),在 βγ ∼ 1000 时,辐射效应开始变得重要(第33.6 节)。两个极限都与 Z 有关。通过 W max 引入了对高能下 M 的轻微依赖,但对于所有实际目的而言,给定材料中的 ⟨ dE/dx ⟩ 仅是 β 的函数。
6 科电离辐射 *Dr. J. Stenger 电话:(0531) 592-6010 电子邮件:joern.stenger@ptb.de 6.1 放射性部门 Dr. D. Arnold 电话:(0531) 592-6100 电子邮件:dirk.arnold@ptb.de 部门 6.2 放射治疗和 X 射线诊断剂量测定 Dr. U. Ankerhold 电话:(0531) 592-6200 电子邮件:ulrike.ankerhold@ptb.de 部门 6.3 辐射防护剂量测定 Dr. A. Röttger 电话:(0531) 592-6300 电子邮件:annette.roettger@ptb.de 部门 6.4 中子辐射 Dr. A. Zimbal 电话:(0531) 592-6400 电子邮件:andreas.zimbal@ptb.de 6.5 部辐射效应 Dr. H. Rabus 电话:(0531) 592-6600 电子邮件:hans.rabus@ptb.de 参考 6.71 职业辐射防护 Dr. R. Simmer 电话:(0531) 592-6710 电子邮件:rolf.simmer@ptb.de *管理层通过 PTB 组织结构图摘录确定(2019 年 12 月)