1。概述3 2。昆虫传粉媒介面临更温暖的未来,并有更多的极端情况9 3。将天气和气候与昆虫传粉媒介的体温联系起来11 3.1生物物理建模可以从环境条件上预测体温11 3.2辐射交换13 3.3对流热交换17 3.4体型17 3.5手术温度方法19 3.6摘要19 4.避免单个昆虫授粉媒介过热的机制20 4.1避免发育时机避免热应激20 4.2较冷的微气候的行为选择较冷的微气候20 4.3行为减少净辐射热增益21 4.4对流热损失的行为增加21 4.5生理机制增加了辐射和辐射损失24的辐射44. 6 25 4.8避免通过减少代谢热产生过热25 5.通过增加蒸发热损失来避免过热27 5.1热与水之间的相互作用29 6。避免过热的机制:生命阶段效应29 6.1鸡蛋29 6.2幼虫30 6.3 pupae 32 7。社会传粉媒介的巢热调节32 7.1大型巢的热预算33 7.2被动与主动热调节调节34 7.3育雏热调节和热耐受性34
采用传统 CMOS 工艺制造但在 4 K 及以下低温下工作的微电子器件最近引起了量子计算领域的关注,因为它们可用作精密控制器和低噪声放大器 [1,2]。这种将电子设备直接纳入低温环境而不是在室温下操作的方法可以在 CUORE(罕见事件地下低温观测站)等实验中提供类似的优势,CUORE 使用低温辐射热法来搜索无中微子双重 beta 衰变。CUORE 使用 TeO 2 晶体上的中子嬗变掺杂 (NTD) 热敏电阻来感应物理能量沉积引起的温度变化。目前,所有 CUORE 电子设备,包括用于偏置 NTD、放大信号和执行读出的电子设备,都在室温下运行 [3]。未来的带粒子识别的 CUORE 升级版 (CUPID) 计划利用为 CUORE 开发的通用低温基础设施,但其电子基础设施的升级正在考虑中 [4]。设计为在 4 K 或以下运行的 CMOS 微电子技术为 CUPID 中的信号前置放大提供了一种替代方法,可以降低电子噪声并引入适度的通道复用因子。到目前为止,在亚开尔文温度下对 CMOS 器件特性的测量很少,如果我们希望考虑使用它们在 CUPID 基准工作温度附近构建放大器和多路复用器,就必须了解这些特性。在本文中,我们介绍了 180 nm CMOS 技术在低至 100 mK 时的首次特性之一,这将用于指导这些器件的设计。
保护工人免受热应激和热应激的疾病是造成职业疾病的重要原因,也可能导致死亡。基于工作场所安全和保险委员会(WSIB)统计数据,仅在2006年至2015年之间,仅建造工人就有350个损失的时间索赔。与热有关的疾病会影响所有工人,甚至会影响年轻和健康的工人。户外工人的重要热源是暴露于太阳。长时间的职业阳光暴露也是患癌症的风险;例如,它使患皮肤癌的风险增加了一倍以上。热应力发生时,当工人对环境因素,体育锻炼和衣服的综合贡献的热量载荷克服了人体的自然冷却系统。轻度或中度的热应力可能不舒服,可能会影响性能和安全性,但通常对您的健康不利。当热应力更加极端时,人体无法应付可能会导致遭受健康影响的工人,从晕厥到疲惫和中风,导致死亡。炎热和潮湿的条件可以在室内或室外发生。影响热应力的环境因素包括空气温度,湿度,空气运动和辐射热的来源,例如在太阳或热物体附近工作。影响热应力的工作任务因素是工作的身体需求,断裂的频率和长度以及穿衣服的类型。工作场所条件的例子可能使工人增加热应激的风险包括:
在宇宙的所有天体物理和宇宙学尺度上都可以找到非重子暗物质存在的证据。根据对宇宙微波背景辐射的观测,暗物质对宇宙总能量的贡献估计为 27%。解决暗物质之谜的一类通用粒子被称为弱相互作用大质量粒子 (WIMP),其质量在 GeV-TeV 范围内,与普通物质的预期相互作用率为弱尺度相互作用量级。EDELWEISS-III 实验的目的是利用锗辐射热计探测银河系暗物质晕中 WIMP 的弹性散射。在 ≈ 18 mK 的低温下,WIMP 引起的核反冲产生的预期 O (keV) 能量沉积会产生可测量的热量和电离信号。这种直接检测实验的主要挑战是 WIMP-核子散射的预期速率较低,最新结果限制了该速率低于每 100 千克每年几次。因此,多层外部屏蔽可保护实验免受环境放射性的影响。通过使用基于反冲类型的粒子识别,可以排除来自屏蔽内元素放射性的其余背景。最成问题的背景来自中子,它引起的核反冲与探测器中的 WIMP 信号无法区分。具体来说,中子是由宇宙射线μ子及其簇射产生的。因此,实验位于莫达内地下实验室,那里 4800 米的岩石使宇宙μ子通量衰减 10 6 倍,降至 5 µ /m 2 /天。其余的μ子使用围绕实验的主动µ否决系统进行标记,该系统由 46 个塑料闪烁体模块组成。
背景 . 基因组编辑能够在一代内将有益的序列变异引入具有高遗传价值的动物的基因组中。这可以通过将变异引入原代细胞,然后通过体细胞核移植克隆从这些细胞中产生活体动物来实现。后一步与效率低下和由于供体细胞错误重编程而导致的发育问题有关,从而引起动物福利问题。直接编辑受精的单细胞胚胎可以规避这个问题,并且可能更好地与行业实施的基因改良策略相结合。方法 . 体外受精的合子被注射 TALEN 编辑器和修复模板,以在 PMEL 基因中引入已知的毛色稀释突变。在将经过验证的胚胎转移到受体体内发育至足月之前,通过聚合酶链反应和测序筛选注射胚胎的胚胎活检样本以查找预期的双等位基因编辑。对小牛进行基因分型,并用可见光和高光谱相机扫描其皮毛以评估热能吸收情况。主要结果 . 生产了多头具有精确编辑基因型的非嵌合型小牛,包括来自高遗传价值父母的小牛。与对照组相比,经过编辑的小牛显示出明显的毛色稀释,这与较低的热能吸收率有关。 结论 . 虽然活检筛查并不绝对准确,但可以通过胚胎介导的编辑轻松生产出非嵌合型、精确编辑的小牛。 PMEL 突变导致的较浅的毛色可以降低辐射热增益,这可能有助于减少热应激。 意义 . 该研究验证了推定的致病序列变异,以使放牧牛快速适应不断变化的环境条件。
图 3.4.1-1:虚拟喷嘴配置 17 图 3.4.1-2:液压油理论排放速度 19 图 3.4.1-3:喷火热释放率 20 图 3.4.1-4:喷火火焰长度 21 图 3.4.1-5:喷火火焰发射功率 22 图 3.4.1:火焰与目标平面之间的关系 23 图 3.4.1-6:距喷射火焰 0.50 米处垂直平面的辐射热通量 24 图 3.4.1-7:距喷射火焰 0.75 米处垂直平面的辐射热通量 24 图 3.4.1-8:距喷射火焰 1.00 米处垂直平面的辐射热通量 25 图 3.4.1-9:距喷射火焰 2.00 米处垂直平面的辐射热通量m 距离喷射火焰 25 图 3.4.1-10: 距离喷射火焰 4.00 m 处垂直平面的辐射热通量 26 图 3.4.1-11: 距离喷射火焰 6.00 m 处垂直平面的辐射热通量 26 图 3.4.1-12: 距离喷射火焰 10.00 m 处垂直平面的辐射热通量 27 图 3.4.1-13: 目标热通量与距离 27 图 3.4.2-1: 预测热释放率与池直径 30 图 3.4.2-2: 池火每单位表面积质量燃烧率 31 图 3.4.2-3: 池火增长至峰值热释放率的时间 32 图 3.4.2-4: 池火火焰高度 33 图 3.4.2.1-1: 距离垂直平面 5.5 m 处的辐射热通量来自 JP-4 池火 35 图 3.4.2.1-2: 辐射热通量至垂直平面 5.75 米 来自 JP-4 池火 35 图 3.4.2.1-3: 辐射热通量至垂直平面 6.0 米 来自 JP-4 池火 36 图 3.4.2.1-4: 辐射热通量至垂直平面 8.0 米 来自 JP-4 池火 36 图 3.4.2.1-5: 辐射热通量至垂直平面 10.0 米 来自 JP-4 池火 37 图 3.4.2.1-6: 辐射热通量至垂直平面 15.0 米 来自 JP-4 池火 37 图 3.4.2.1-7: 辐射热通量至垂直平面 20.0 米 来自 JP-4 池火 38 图 4.1-1: 火灾热量释放速率 41 图 4.1-2:隔间气体层温度 42 图 4.1-3:层界面高度 42 图 4.1-4:目标辐射热通量 43 图 4.1-5:目标热通量与离火距离的关系 43 图 4.2.1-1:热释放速率随隔间尺寸变化 44 图 4.2.1-2:不同隔间尺寸的层温度 45 图 4.2.1-3:15x15 米垂直目标隔间的热通量 46 图 4.2.1-4:5x5 米垂直目标隔间的热通量 46 图 4.2.2-1:不同火势大小的对流热释放速率 47 图 4.2.2-2:不同火势大小的辐射热释放速率 47 图 4.2.2-3:稳态热释放速率与火灾直径 48 图 4.2.2-4:不同火灾大小的上层温度 48 图 4.2.2-5:不同火灾大小的下层温度 49 图 4.2.2-6:稳定状态层温度与火灾直径 49 图 4.2.2-7:2.5 米直径火灾的目标热通量 50 图 4.2.2-8:2.0 米直径火灾的目标通量 51 图 4.2.2-9:1.5 米直径火焰的目标通量 51