Loading...
机构名称:
¥ 1.0

采用传统 CMOS 工艺制造但在 4 K 及以下低温下工作的微电子器件最近引起了量子计算领域的关注,因为它们可用作精密控制器和低噪声放大器 [1,2]。这种将电子设备直接纳入低温环境而不是在室温下操作的方法可以在 CUORE(罕见事件地下低温观测站)等实验中提供类似的优势,CUORE 使用低温辐射热法来搜索无中微子双重 beta 衰变。CUORE 使用 TeO 2 晶体上的中子嬗变掺杂 (NTD) 热敏电阻来感应物理能量沉积引起的温度变化。目前,所有 CUORE 电子设备,包括用于偏置 NTD、放大信号和执行读出的电子设备,都在室温下运行 [3]。未来的带粒子识别的 CUORE 升级版 (CUPID) 计划利用为 CUORE 开发的通用低温基础设施,但其电子基础设施的升级正在考虑中 [4]。设计为在 4 K 或以下运行的 CMOS 微电子技术为 CUPID 中的信号前置放大提供了一种替代方法,可以降低电子噪声并引入适度的通道复用因子。到目前为止,在亚开尔文温度下对 CMOS 器件特性的测量很少,如果我们希望考虑使用它们在 CUPID 基准工作温度附近构建放大器和多路复用器,就必须了解这些特性。在本文中,我们介绍了 180 nm CMOS 技术在低至 100 mK 时的首次特性之一,这将用于指导这些器件的设计。

180nm CMOS技术的低温表征...

180nm CMOS技术的低温表征...PDF文件第1页

180nm CMOS技术的低温表征...PDF文件第2页

180nm CMOS技术的低温表征...PDF文件第3页

180nm CMOS技术的低温表征...PDF文件第4页

180nm CMOS技术的低温表征...PDF文件第5页

相关文件推荐

1997 年
¥5.0
1996 年
¥4.0