住宅需求响应是管理产消者负荷需求的关键支持技术之一。然而,由于涉及动态参数和可再生能源,负荷调度问题变得相当具有挑战性。为了解决这个问题,本研究提出了一种双层负荷调度机制,将动态电价与可再生能源和储能系统相结合。第一层涉及将负荷调度和优化问题制定为最佳停止问题,目标是最小化能源消耗和延迟成本。这个问题涉及实时电价信号、客户负荷调度优先级、基于机器学习 (ML) 的预测负荷需求以及可再生和储能单元配置文件,使用分支定界算法和分支定界算法的数学规划来解决。由于第一层优化问题被制定为停止问题,因此使用一步前瞻规则获得最佳时间段,以调度具有处理不确定性能力的负荷。第二层用于通过动态电价信号进一步建模负荷调度问题。然后使用遗传算法 (GA) 求解成本最小化目标函数,其中输入参数来自第一级优化解决方案。此外,还对时间因素和电价方面的负载优先级影响进行了建模,以允许最终用户控制其负载。使用太阳能家庭电力数据、Ausgrid、AUS 进行分析和模拟结果以验证所提出的模型。结果表明,所提出的模型可以处理负载调度过程中涉及的不确定性,并在成本和不适感降低方面提供具有成本效益的解决方案。此外,双层过程可确保成本最小化,同时使最终用户对动态电价信号感到满意。© 2022 阿尔卡拉大学。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
Mechanical properties (tensile strength (TS), modulus of elasticity in tensile (MET), flexural strength (FS), modulus of elasticity (MOE)) of the material to be obtained depending on the production parameters in the production of high-density polyethylene (HDPE) wood-polymer composites with Scots pine wood flour additive were predicted using Artificial Neural Networks (ANN) model and without破坏性测试。在研究的第一阶段,使用来自56种不同研究的有关木材聚合物复合材料的机械性能的不同研究开发了ANN模型。在第二阶段,为了确定模型的可靠性,使用未在模型的训练和测试中使用的输入参数估算输出值。基于相同的输入参数,产生了测试样品,并进行了机械测试。通过考虑平均绝对百分比误差(MAPE)值来比较从实验和ANN模型中获得的结果。在ANN模型的训练和测试阶段获得的测定系数(R 2)值均高于0.90。通过这种方式,ANN模型成功预测了木材聚合物复合材料的机械性能。由于从机械测试获得的大多数MAPE值低于10%,因此该模型被认为是可靠的模型。doi:10.15376/biores.19.3.4468-4485关键字:拉伸强度;弯曲力;弹性模量; HDPE; MAPE联系信息:A:Safranbolu的互助设计系,Safranbolu西YılmazDizdar职业学校,卡拉布克大学,Safranbolu/Karabuk,土耳其; B:土耳其卡拉布克大学卡拉布克大学技术学院工业设计工程系;答:土耳其杜兹克大学的林产品工业工程,杜兹斯大学林业教师; *通讯作者:altayeroglu@karabuk.edu.tr简介
在这项研究中,我们探讨了计算神经科学中的模拟设置。我们使用Genesis,一种通用模拟引擎,用于亚细胞组件和生化反应,现实的神经元模型,大型神经网络和系统级模型。Genesis支持开发和运行计算机模拟,但留下了一个差距,用于建立当今更大,更复杂的模型。大脑网络现实模型的领域已过度生长了最早模型的简单性。挑战包括管理软件依赖性和各种模型的复杂性,设置模型参数值,将输入参数存储在结果旁边以及提供执行统计信息。此外,在高性能计算(HPC)上下文中,公共云资源正在成为昂贵的本地集群的替代品。我们提出了神经模拟管道(NSP),该管道有助于使用基础架构作为代码(IAC)容器化方法,促进了大规模的计算机模拟及其部署到多个计算基础架构。作者通过定制的视觉系统(称为retnet(8×5,1))使用生物学上可见的霍奇金 - 赫斯利尖刺神经元,证明了NSP在用创世纪编程的模式识别任务中的效果。我们通过在Hasso Plattner Institute(HPI)将来以服务为导向的计算(SOC)实验室以及通过全球最大的公共云服务提供商的Amazon Web Services(AWS)上执行54套本地执行的模拟来评估管道。我们报告了使用Docker的非候选和容器的执行,并在AWS中呈现每个仿真的成本。结果表明,我们的神经模拟管道可以减少神经模拟的进入障碍,从而使它们更实用和成本效率。
摘要:叶面积指数(LAI)是定量研究土壤-植被-大气传输系统中能量和质量平衡的重要输入参数。作为一种主动遥感技术,光探测和测距(LiDAR)为描述森林冠层LAI提供了一种新方法。本文回顾了利用离散机载LiDAR扫描仪(DALS)获取的点云数据(PCD)反演LAI的主要方法,其验证方案及其局限性。基于DALS PCD的LAI反演方法有两种,即经验回归和间隙分数(GF)模型。在经验模型中,与树高相关的变量,LiDAR穿透指数(LPI)和冠层盖度是使用最广泛的代理变量。与高度相关的代理使用最多;然而,LPI 被证明是最有效的代理。基于比尔-朗伯定律的 GF 模型已被证明可用于估计 LAI;然而,LPI 的适用性取决于地点、树种和 LiDAR 系统。在先前研究的局部验证中,观察到经验模型和 GF 模型在时间、空间和不同 DALS 系统之间的可扩展性较差,这意味着仍然需要现场测量来校准这两种类型的模型。使用 DALS PCD 校正聚集效应和木质材料的影响以及经验模型和 GF 模型的饱和效应的方法仍需进一步探索。最重要的是,需要进一步开展工作,重点评估已发布方法对新地理环境、不同 DALS 传感器和调查特征的可迁移性,并在此基础上确定每个因素对使用 DALS PCD 进行 LAI 检索过程的影响。此外,从方法论的角度来看,利用 DALS PCD 表征冠层的 3D 结构、充分利用机器学习方法在多源数据融合中的能力、开发包括 LAI 在内的冠层结构参数的时空可扩展模型以及使用多源和异构数据都是有前途的研究领域。
钒氧化还原流量电池(VRB)系统涉及复杂的多物理和多时间尺度相互作用,其中电解质流速在静态和动态性能中起关键作用。传统上,固定流量已用于操作方便。但是,在当今高度动态的能源市场环境中,根据运营条件调整流量可以为提高VRB能源转换效率和成本效益提供显着优势。不幸的是,将电解质流速纳入传统的多物理模型对于VRB管理和控制系统来说过于复杂,因为实时操作要求用于船上功能的低计算和低复杂模型。本文介绍了一种新型的数据驱动方法,该方法将流速集成到VRB建模中,增强了数据处理能力和VRB行为的预测准确性。所提出的模型采用封闭式复发单元(GRU)神经网络作为其基本框架,在捕获VRB的非线性电压段方面表现出了非凡的熟练程度。GRU网络结构经过精心设计,以优化模型的预测能力,流速被视为关键输入参数,以解释其对VRB行为的影响。模型改进涉及分析在VRB操作中在各种流速下获得的精心设计的模拟结果。还设计和进行了实验室实验,涵盖了电流和流速的不同条件,以验证所提出的数据驱动的建模方法。对几种最新算法进行了比较分析,包括等效电路模型和其他数据驱动的模型,证明了考虑流速的基于GRU的VRB模型的优越性。由于GRU在处理时间序列数据方面的出色能力,该模型在宽范围内提供了令人印象深刻的准确终端电压预测,低误差率不超过0.023 V(1.3%)。这些结果表明了所提出的方法的功效和鲁棒性,突出了对管理和控制系统设计的准确VRB建模中流速的新颖性和重要性。
在地质力学风险下模拟CO 2存储通常涉及由于多相流和地质力学之间的耦合而导致的大量计算成本。实施标准工作流程,例如位置优化,使用此类耦合物理模型可以显着增加计算开销,并使模型不切实际地使用。我们研究使用深度学习模型以显着减少与模拟和量化CO 2存储的地质力学风险相关的计算开销的可行性。所提出的方法利用基于深度学习的替代建模来显着提高耦合流动地球力学模拟的效率,以识别合适的注入井位置以存储CO 2。使用模拟数据,我们训练U-NET卷积神经网络,以了解井位置和空间分布的模型参数(渗透率)之间的映射到感兴趣的仿真输出。一旦经过固定的模型输入参数训练,U-NET模型可以将不同的井位置场景映射到相应的压力场,CO 2饱和度和地质力学输出,包括垂直位移和塑性应变。随后采用U-NET模型作为替代识别注入井位置所需的耦合流动地球力学模拟以最大程度地减少地质力学风险所需的有效工具。我们报告的初步结果表明,受过训练的U-NET模型可以预测井位置的压力和饱和场,所有其他输入仍与训练中使用的仿真模型保持一致。我们在不同的假设下研究网络的性能,并估计不同的流量和地质力学输出。结果表明,U-NET模型可以通过使用快速代理模型替换耦合物理模拟来大大降低井位置工作流的计算成本,该模型可用于预测与不同的井位置和注入策略相关的地质机械风险。开发的框架可用于改善耦合物理建模的计算需求,并促进其在决策工作流程和现场管理中的应用。
常见问题解答 - 带有答案的经常询问的问题4 all建模团队对最近的问题和批评的回答(5.Feb.2024)在进行有关Earth4All-Global模型的详细讨论之前,我们想对任何(类型的)模型做出一些一般性评论。在一般计算机模型中是使建模者的心理模型明确的工具,并允许他们在此内进行实验。虽然乔治·盒子(George Box)的著名谚语写着“所有模型都是错误的,但有些是有用的”,但人们普遍承认,实际上所有模型都可能对其特定目的有用。所有模型都是现实的理想化,这通常为批评提供了很大的空间。批评是受欢迎的,通常是洞察力本身的重要来源,因为它开辟了有关所讨论系统和基本假设的不同心理模型的辩论。实际上,一些最著名,最受批评的模型不仅提供了有关我们的世界如何运作的宝贵见解,而且向我们展示了为什么一些简化的假设可能会使我们误入歧途(例如Nordhaus的DICE模型)。Donella Meadows(1982,2008)对模型及其在政策中的作用进行了几次批评/思考。主要结论之一是,应该为特定目的设计模型/以回答特定问题。这也是定义边界的原因(即该特定模型的哪些变量包括哪些变量,包含的关系等)。有关E4A-Global模型质量的一些问题没有考虑到该全球仿真模型的做法。该模型不是为了做许多批评家显然期望它做的事情。没有模型可以做一些批评家似乎期望E4A-Global做的事情,即以“科学”的精确度来预测现实世界的未来。Earth 4 all-Global模型对人类的长期未来有什么能力?快速答案“很少”,但也“毫无疑问”。该模型通过模拟模型的结构和输入参数产生的两个场景来说明Earth4All Book的故事。以及对21世纪的变革经济学委员会(TEC)的评估以及书中概述的故事情节,该模型绘制了两张一致但对比的潜在期货与宽阔的笔画的图片。
将计算科学纳入医学和生物学领域的最新趋势导致有关医学和实验信息的大量数据积累。数据挖掘在医疗保健领域的应用可以通过进行数据分析并从看似无关的大量收集数据中发现关系来早期预测患者状况及其行为。由于其使所有各方受益的能力,数据挖掘在医疗保健运营中的普及也越来越高。例如,该部门的数据挖掘应用有助于确保患者获得更实惠,更好的医疗服务,医生确定最佳实践和有效治疗,医疗保健公司对客户关系管理做出明智的决定,并发现医疗保险公司发现虐待和欺诈。尽管有这些有希望的趋势,但是,医疗保健交易产生的结果和庞大的数据量证明了大量且过于复杂,无法使用传统方法进行处理和分析。此外,从数据仓库中提取信息的常规机制并未确定所涉及的隐藏模式,因此在本研究中采用了一种新方法来对数据进行分类以预测患者的医疗状况。此外,在这项研究中,基于医学属性,使用机器学习算法作为分类器的医学属性来描述与大脑相关疾病严重程度的预测。这是通过利用从医疗数据仓库(DWE)获得的数据来实现的。简介使用提取,转换,负载(ETL)过程和在线分析处理(OLAP)方法用于特征提取,训练和测试数据。机器学习算法(例如人工神经网络(ANN)和支持向量机(SVM))用于生成优化的输入参数(权重和偏差),以选择最佳内核来对数据进行分类以进行进一步诊断。发现所提出的模型在鉴定疾病时提供了快速的响应时间和最小错误率。因此,建议的框架可用于预测患者的状况,并在医疗机构或组织中治疗疾病的治疗方面提供最佳决定。关键字:支持向量机(SVM),人工神经网络(ANN),ETL(提取,转换和负载)过程,机器学习,疾病严重性,数据仓库1。
自20世纪30年代以来,人们就已认识到服装在人类生物气象学研究中的重要性(例如,Winslow等人,1937年;Gagge等人,1938年;Winslow等人,1938年;Gagge等人,1941年)。在这些研究中,人们运用实验和理论工具研究了服装的作用,将其作为人体-大气界面的一个重要输入变量。在20世纪下半叶(例如,Auliciems和de Freitas,1976年;de Freitas,1979年),服装被视为并被解读为人类对环境条件的“反应”,并被分析为一个决定性模型的输出。如今,服装对生物气象热调节的影响通常以两种方式考虑:作为热生理模型(例如,Fiala 等人,2012)的输入参数(例如,Havenith 等人,2012)或作为代表热适应行为的模型输出(Lin,2009;Potchter 等人,2018)。在这种情况下,r cl 可用作表示人体热交换不平衡程度的量度。当热量过剩时,人体需要冷却以达到能量平衡。此时 r cl 值为负。请注意,在迄今为止发表的研究中根本没有考虑负服装阻力值,而只是将其等于零,理由是“由于在公共场合裸体是不可接受的,因此 clo 值 ≤ 0 被设置为零”(Yan,2005)。本研究中也使用了负的服装阻力值,因为当服装被视为一种热调节器而忽略其对人体行为的依赖性时,这些值是可以解释的。相反,当存在热量不足时,人体需要变暖才能达到能量平衡。在这种情况下,r cl 值为正。当人体处于能量平衡状态时,既不需要冷却也不需要变暖,感觉这种状态很舒适。在这种情况下,r cl 非常接近或等于零。服装阻力参数是一个复数,因为它取决于人和环境的特征。在人类特征中,个人、社会方面以及活动类型是最具决定性的。活动类型决定代谢活动率,该率在 40 到 600 Wm − 2 之间变化
摘要:地面振动是爆破活动最不利的环境影响之一,会对邻近的房屋和建筑物造成严重损坏。因此,有效预测其严重程度对于控制和减少其复发至关重要。不同的研究人员提出了几种常规振动预测方程,但大多数仅基于两个参数,即单位延迟使用的炸药量和爆炸面与监测点之间的距离。众所周知,爆破结果受许多爆破设计参数的影响,例如负担、间距、火药系数等。但这些都没有被考虑在任何可用的常规预测器中,因此它们在预测爆炸振动时显示出很高的误差。如今,人工智能已广泛应用于爆破工程。因此,本研究采用了三种人工智能方法,即高斯过程回归 (GPR)、极限学习机 (ELM) 和反向传播神经网络 (BPNN),来估计印度 Shree Cement Ras 石灰石矿爆破引起的地面振动。为了实现该目标,从矿场收集了 101 个爆破数据集,其中粉末系数、平均深度、距离、间距、负担、装药重量和炮泥长度作为输入参数。为了进行比较,还使用相同的数据集构建了一个简单的多元回归分析 (MVRA) 模型以及一种称为多元自适应回归样条 (MARS) 的非参数回归技术。本研究是比较 GPR、BPNN、ELM、MARS 和 MVRA 以确定其各自预测性能的基础研究。八十一 (81) 个数据集(占总爆破数据集的 80%)用于构建和训练各种预测模型,而 20 个数据样本(20%)用于评估所开发的预测模型的预测能力。使用测试数据集,将主要性能指标,即均方误差 (MSE)、方差解释 (VAF)、相关系数 (R) 和判定系数 (R2) 进行比较,作为模型性能的统计评估指标。本研究表明,与 MARS、BPNN、ELM 和 MVRA 相比,GPR 模型表现出更出色的预测能力。GPR 模型显示最高的 VAF、R 和 R 2 值分别为 99.1728%、0.9985 和 0.9971,最低的 MSE 为 0.0903。因此,爆破工程师可以采用 GPR 作为预测爆破引起的地面振动的有效且合适的方法。