人们经常宣扬“大数据”与人工智能 (AI) 的结合,认为将其应用于医疗决策时能带来宝贵的健康益处。然而,负责任地采用基于人工智能的临床决策支持系统在个人和社会层面都面临着多重挑战。其中一个特别令人担忧的特点是可解释性问题,因为如果医生不知道(或无法知道)算法得出特定输出的方式,则可能导致多重挑战,包括无法评估输出的优点。这种“不透明性”问题引发了人们对医生是否合理依赖算法输出的质疑,一些学者坚持可解释性的重要性,而另一些学者则认为没有理由对人工智能有要求,而对医生没有要求的东西。我们认为这两种观点都有可取之处,但我们发现,为了阐明可解释性在临床实践中的基本功能,从而阐明其在人工智能临床应用背景下的相关性,需要进行更深入的探讨。在本文中,我们通过研究可解释性在临床医学中的要求来探索可解释性,并区分可解释性对当前患者和未来患者的功能。这种区别对于可解释性的短期和长期要求具有影响。我们强调透明度在可解释性中的作用,并确定语义透明度是可解释性问题本身的基础。我们认为,在日常临床实践中,准确性足以作为临床决策的“认识论依据”,而要求可解释性(科学或因果解释)的最令人信服的理由是,通过建立更强大的世界模型,有可能改善未来的护理。我们认为临床决策的目标是尽可能多地提供最佳结果,并且发现——只要努力探索科学解释并继续改善未来患者的医疗保健,准确性就足以作为对当今患者进行干预的依据。
人们经常宣传“大数据”和人工智能 (AI) 的结合在应用于医疗决策时具有带来宝贵健康益处的潜力。然而,负责任地采用基于 AI 的临床决策支持系统在个人和社会层面都面临着若干挑战。引起特别关注的特征之一是可解释性问题,因为如果医生不知道(或无法知道)算法得出特定输出的方式,这可能会导致多重挑战,包括无法评估输出的优点。这种“不透明性”问题引发了人们对医生是否合理地依赖算法输出的质疑,一些学者坚持可解释性的重要性,而另一些学者则认为没有理由要求 AI 做医生不需要的事情。我们认为这两种观点都有可取之处,但我们发现,为了阐明可解释性在临床实践中的潜在功能,以及它在临床应用人工智能背景下的相关性,需要进行更细致的分析。在本文中,我们通过研究可解释性在临床医学中的需求来探索可解释性,并区分可解释性对当前患者和未来患者的功能。这种区别对可解释性的短期和长期要求具有影响。我们强调了透明度在可解释性中的作用,并认为语义透明度是可解释性问题本身的基础。我们认为,在日常临床实践中,准确性足以作为临床决策的“认识论依据”,而要求科学或因果解释意义上的可解释性的最令人信服的理由是通过建立更强大的世界模型来改善未来的护理。我们认为临床决策的目标是尽可能多地提供最佳结果,并且发现——只要揭示科学解释的努力继续改善未来患者的医疗保健,准确性就足以为当今的患者提供干预。
多数表决是放大正确结果的基本方法,广泛应用于计算机科学及其他领域。虽然它可以放大具有经典输出的量子设备的正确性,但量子输出的类似程序尚不清楚。我们引入量子多数表决作为以下任务:给定一个乘积状态 | ψ 1 ⟩⊗· · · ⊗| ψ n ⟩,其中每个量子位处于两个正交状态 | ψ ⟩ 或 | ψ ⊥ ⟩ 之一,输出多数状态。我们表明,该问题的最佳算法在最坏情况下可实现 1 / 2 + Θ ( 1 / √ n ) 的保真度。在至少 2 / 3 的输入量子位处于多数状态的情况下,保真度增加到 1 − Θ ( 1/ n ),并且随着 n 的增加而趋近于 1。我们还考虑了更普遍的问题,即在未知量子基中计算任何对称且等变的布尔函数 f : { 0, 1 } n →{ 0, 1 },并表明我们的量子多数表决算法的泛化对于此任务是最佳的。广义算法的最优参数及其最坏情况保真度可以通过大小为 O ( n ) 的简单线性程序确定。该算法的时间复杂度为 O ( n 4 log n ),其中 n 是输入量子比特的数量。
工业消费者越来越倾向于投资光伏 (PV) 和储能系统 (ESS) 来满足其电力需求。然而,负载需求和光伏输出的不确定性给 ESS 的运行带来了巨大的挑战。本文提出了一种基于随机模型预测控制 (MPC) 方法的 ESS 能量管理策略。采用嵌入时间序列相关性的非参数概率预测方法来描述负载需求和光伏输出的不确定性。然后,提出了一个以最小化总运营成本为目标的两阶段能量管理模型。上级可以为 ESS 生成每小时运行策略,而下级则侧重于更详细的分钟级运行策略。每小时运行策略也被用作指导下级 ESS 运行的基础。此外,引入机会约束以实现光伏用电量和电价之间的双赢解决方案,而 ESS 容量的终值约束可以更好地应对预测时间窗口之外的不确定性。最后,数值结果表明所提出的方法可以实现有效的ESS能量管理策略。
修订的措施表B1介绍了2024年第三季度的业务,非农业业务和制造业的生产率和相关措施。表A2为非财务公司提供了这些措施。2024年第三季度的非农业业务部门的生产率增长了2.3%,而不是先前的增长2.2%的估计,这反映了对产出的0.1%上升的上升点,并且在工作时间上向上转移了0.1%的修订点。单位人工成本被修订了0.3个百分点,反映了劳动生产率的0.1%向上修订,以及0.2个百分点向下修订到小时补偿。制造业的生产率下降了0.4个百分点,在2024年第三季度增加了0.5%,反映了输出的0.4%的下调点,并在工作时间上向上修订0.1%。生产率下降了0.2个百分点,并在不可策划的制造业中修订了0.5个百分点。(请参阅表B1。)在非金融公司部门中,在2024年第三季度的生产率下降了0.4个百分点,提高到3.0%。此修订版反映了对输出的0.3%的下降修订,并在工作时间上向上修订0.1%。(请参阅表A2。)
ECM已在应用程序中使用典型负载进行了验证。最大加载基于数据表值。实际功能在典型(已验证)和最大(数据表)之间,并且取决于环境温度,系统电压以及所有其他输入和输出的状态。在大多数情况下,应用程序不可能使用最大值。请联系伍德沃德销售以获取更多信息。
摘要 随着可再生能源的普及,电力市场价格波动性加大。因此,对于储能系统 (ESS) 来说,利用能源市场投标的多维性质来最大化盈利能力非常重要。然而,目前的学习方法不能充分利用能源市场中高维的价格-数量投标。为了应对这一挑战,我们修改了常见的强化学习 (RL) 过程,提出了一种称为神经网络嵌入投标 (NNEB) 的新投标表示方法。NNEB 是指由具有离散输出的单调神经网络表示的市场投标。为了有效学习 NNEB,我们首先使用 RL 学习一个神经网络作为从市场价格到 ESS 功率输出的战略映射。然后,我们通过两次训练修改重新训练网络,使网络输出单调和离散。最后,神经网络等效地转换为高维投标。我们对真实世界的市场数据集进行了实验。我们的研究表明,所提出的方法比基线高出 18% 的利润,使最佳市场竞标者的利润高达 78%。关键词:电力市场、实时市场、储能系统、战略竞价、强化学习
ENVI-AMC 分析仪可以连接到多点采样器,也可以用作单点分析仪。ENVI-AMC 机架分析仪可以集成到现有测量系统的一部分。测量结果、历史数据、手册和设置可以通过分析仪自己的基于 Web 的用户界面轻松获取,并具有必要的工业接口,如 RS232、USB 和以太网。测量结果可以发送到具有 4-20mA 输出的外部系统。还有继电器输出和数字输入可用。
对于需要最高质量输出的具有大量可变数据内容的应用程序,或者首选 PDF 工作流程的应用程序,我们有 Domino Editor™ RIP。这种模块化解决方案从简单的桌面到多个机架安装刀片,可以配置为处理您的数据要求。还支持全灰度图像处理,以获得最高质量的打印输出。包括 PDF 文件以及 IPDS 和 AFP 数据流的选项。