治疗MND的主要障碍是血脑屏障,这是血液和大脑之间的保护性衬里,可防止大多数药物进入大脑。该项目的研究人员正在开发一种克服这一障碍的方法,以便针对SOD1 MND的新的,令人兴奋的遗传药物,可以有效地到达大脑中的运动神经元。他们的开创性方法是将遗传药物连接到允许其通过血脑屏障转移并促进运动神经元健康的分子。
1.7.2.1 流量或温度时间序列日期不足以运行请求的时间窗口..................................................................................................................... 289
• SunZia 输电线路是 Pattern Energy 拥有的 3,000 MW 高压直流输电项目,于 2023 年 9 月破土动工,预计将于 2026 年投入商业运营。Pattern Energy 和 RETA 之间的合作是为了共同开发这个 550 英里项目的新墨西哥部分——大约 350 英里。• RETA 已与西南电力集团合作共同开发拟议的 RioSol 输电线路,这是一条 1,500 MW 交流线路,预计将于 2028 年投入商业运营,与 SunZia 输电线路位于同一位置。• RETA 已与 Ameren 输电公司合作共同开发拟议的 114 英里、182 MW 的 Lucky/Mora 输电线路。• RETA 已与 Invenergy 输电公司合作共同开发拟议的 400 英里、4,000 MW 的北路输电线路。 • RETA 于 2023 年 10 月 23 日至 24 日组织并主办了第二次储能研讨会,主题为“可再生能源未来的储能和可靠性”,超过 200 名参会者。
基于化疗药物的长期单一疗法常常导致疗效不足、耐药性、转移和不良副作用等治疗限制。核酸与化疗药物联合、化疗联合、化疗与肿瘤免疫治疗联合等多种组合抗癌策略已被采用,有望克服这些局限性,但仍然存在一些潜在风险。如今,越来越多的研究表明植物化学物质的抗癌作用是通过直接调节癌细胞事件以及肿瘤微环境来介导的。具体而言,这些天然化合物表现出对癌细胞增殖、凋亡、癌细胞迁移和侵袭的抑制、对P-糖蛋白的抑制、减少血管化和激活肿瘤免疫抑制的作用。由于这些植物化学物质的毒性低且调节途径多样,化疗药物与天然化合物的结合可作为一种新的癌症治疗方法,以提高癌症治疗的效率并减少不良后果。为了最大限度地发挥小分子化疗药物和天然化合物的组合优势,已经开发出各种功能性纳米级药物递送系统,例如脂质体、主客体超分子、超分子、树枝状聚合物、胶束和无机系统,用于双重/多重药物共递送。这些共递送纳米药物可以改善药代动力学行为、肿瘤蓄积能力并实现肿瘤位点靶向递送。这样,可以通过多靶点治疗提高抗肿瘤效果并通过降低剂量减少副作用。在这里,我们介绍了植物化学物质与小分子抗癌药物相结合的协同抗癌结果及其相关机制。我们还重点阐述了纳米系统与药物共同输送协同提高抗癌效果的设计理念和作用机制。此外,还讨论了如何将这些见解转化为临床效益的挑战和前景。2022 年由 Elsevier BV 出版
目前,全球每六人中就有一人患有脑部疾病,包括阿尔茨海默病、帕金森病、癫痫、脑损伤、脑癌、神经感染和中风等各种神经系统疾病。由于血脑屏障 (BBB) 覆盖整个大脑,这些疾病的治疗既复杂又有限。血脑屏障不仅具有保护大脑免受有害物质侵害的功能,而且还是代谢屏障和营养物质/血清因子/神经毒素的运输调节剂。了解这些脑部疾病治疗特点,就很容易理解治疗药物缺乏疗效的原因,这是由于血脑屏障天生具有抗渗透性。为了克服这一限制,基于纳米技术/微技术的药物输送系统得到了明智的开发。脑靶向药物输送可以实现具有更高治疗效果和较低副作用的靶向治疗,因为它针对的是药物输送系统中存在的部分。脑靶向药物输送研究是一个活跃、丰富且多学科的研究领域,本期特刊旨在介绍该领域的当前最新进展。本期特刊介绍了一系列九篇研究文章和三篇评论文章,作者来自 10 个不同的国家,表明了该领域开展的研究具有多学科性。本期特刊汇集了从胶质母细胞瘤 (GBM) 治疗到神经退行性疾病和癫痫的最新研究。此外,还介绍了以下主题的文献综述:(i) 用于 GBM 治疗的新型药物输送系统,(ii) 阿尔茨海默病免疫疗法的潜力,以及最后,(iii) 检测和监测大脑中大分子的当前方法。治疗中枢神经系统 (CNS) 疾病的主要障碍是血脑屏障的存在,这会阻碍治疗药物的输送。众所周知,很少有小分子药物能够穿过血脑屏障,大多数生物药物则不能。作为克服 BBB 的另一种途径,Kouzehgarani 等人评估了向大鼠脑池内注射抗 EGFR 抗体后其在脑内的生物分布。他们表明,与静脉注射相比,脑脊液注射后单克隆抗体 (mAb) 渗透到脑实质中的能力更强更深。作者证明,通过脑脊液微循环绕过 BBB 可能是改善 mAb 向脑输送的一种策略,可实现 IgG 大小的生物制剂的深度渗透 [1]。另一种可以成功到达大脑的给药途径是鼻内途径。研究人员最近对鼻内给药进行了探索,因为它可以通过嗅球绕过 BBB 到达大脑。Petkova 等人采用这种策略,使用透明质酸酶包被的乙二醇壳聚糖-DNA 复合物 (GCPH) 增强基因向大脑皮层的传递 [ 2 ]。作者表明,经鼻腔给药透明质酸酶包被的复合物在脑区蛋白质表达水平较高。遵循同样的鼻腔给药策略,Qizilbash 等人开发了一种含有百里香醌 (TQ) 油的柚皮素包覆纳米结构脂质载体 (NGN-NLC),以研究该纳米系统的抗抑郁潜力 [ 3 ]。他们的体外和体内结果显示,与鼻腔给药的 NGN 悬浮液相比,NGN-NLC 具有更高的渗透性和更大的抗抑郁潜力。最后,
血液遗传疾病是由基因或其调节元件突变引起的,导致功能失调,失调或不存在蛋白质。常规基因治疗方法包括使用病毒载体(例如与腺相关病毒(AAV)(Mingozzi and High,2011年)和慢病毒(LV)载体添加突变基因的功能拷贝,并将其功能副本(Naldinii,2011)。这些修饰的病毒可以将编码在其基因组中的转基因表达盒传递到使用遗传信息的细胞核中。这种基因替代策略是非依赖性的,因此无论其基因型如何,都可以使患者具有相同的状况。Despite its remarkable success for ex vivo and in vivo treatment of several monogenic disorders ( Dunbar et al., 2018 ), there are still major hurdles to overcome to improve therapeutic outcomes and treat challenging monogenic (e.g., hemoglobinopathies, immunodeficiencies, and congenital anemias) as well as multifactorial blood diseases (e.g., cancer,自身免疫和传染病)。除了涉及媒介的问题,例如免疫原性和端主主义(Masat等,2013; Colella et al。,2018),这超出了这篇评论的范围,经典基因更换具有重大限制:很难忠实地重新构成内源性启动者和基因的特征。组织 - 发育和刺激特异性基因表达需要可以位于基因组遥远区域的不同基因组元素(启动子,增强子和消音器)的复杂相互作用,并且跨越了几个基线酶(Schoenfelder和Fraser,2019年)。AAV载体是小病毒(约4.7 kb),限制了在表达盒中包括的调节元素的选择,尤其是在传递大型转基因时(Li和Samulski,2020年)。此外,它们主要是在非分散细胞中的偶发性,并通过细胞分裂逐渐消失(Nakai等,2001; Ehrhardt等,2003; Bortolussi et al。,2014)