我们目前正在AI中经历关键时刻,这种趋势正在迅速扩展到各个部门,并且可能对社会,企业和政府产生巨大的影响。这一激增主要是由绩效的重大增强驱动的,几乎任何专业都可以通过合并AI技术来实现。因此,未能采用这些能力的实体可能很快发现自己处于竞争不利的位置。应对这种不断增长的需求,各种开发人员和公司正在积极将AI嵌入常用平台,例如桌面和移动操作系统(OS)。有些人甚至正在开发专门的硬件,以提高这种变革性技术的效率,以确保AI工具对更广泛的受众更容易获得和有效。
石墨烯纳米纤维(GNR)由于通过边缘结构和色带宽度的变化来精确调整电子性能的潜力,因此在纳米电子学上引起了显着关注。然而,GNR与高度渴望的锯齿形边缘(ZGNR)的合成,对旋转和量子信息技术至关重要,仍然具有挑战性。在这项研究中,提出了用于合成一类称为边缘延伸ZGNRS的新型GNR类的设计主题。此基序可以定期沿曲折边缘的边缘扩展进行控制。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。 所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。 此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。
液体分析是跟踪食品、饮料和化学制造等行业是否符合严格的工艺质量标准的关键。为了在线并在最感兴趣的点分析产品质量,自动监控系统必须满足小型化、能源自主性和实时操作方面的严格要求。为了实现这一目标,我们介绍了在神经形态硬件上运行的人工味觉的第一个实现,用于连续边缘监控应用。我们使用固态电化学微传感器阵列来获取多变量、随时间变化的化学测量值,采用时间滤波来增强传感器读出动态,并部署基于速率的深度卷积脉冲神经网络来有效融合电化学传感器数据。为了评估性能,我们创建了 MicroBeTa(微传感器味道测试),这是一个用于饮料分类的新数据集,包含 3 天内进行的 7 小时时间记录,包括传感器漂移和传感器更换。我们实现的人工品味在推理任务上的能效比在其他商用低功耗边缘 AI 推理设备上运行的类似卷积架构高出 15 倍,在 USB 棒外形尺寸中包含的单个英特尔 Loihi 神经形态研究处理器上实现了比传感器读数采样周期低 178 倍以上的延迟和高精度(97%)。
Last but not least, the project will bridge the gap between hardware and software models by investigating mapping strategies targeting the following design constraints: (a) co-design and co-optimization with the underlying routing mechanism, so that smart mappings can allow more lightweight multicast hardware, (b) co-optimizing the SNN partitioning step with the placement one for efficient mapping of large scale SNNs to highly-parallel神经形态硬件。
摘要 - 尽管在边缘应用中广泛采用了视力传感器,例如监视,视频数据的传输会消耗大量频谱资源。Semantic Communication(SC)通过在语义层面提取和压缩信息,提供传输数据的准确性和相关性,同时大大减少传输信息的量,从而提供了解决方案。但是,由于缺乏感应能力,传统的SC方法由于在边缘视频中反复传输静态帧而面临效率低下,这会导致频谱效率低下。为了应对这一挑战,我们建议使用计算机视觉传感(SCCV)框架进行EDGE视频传输的SC。框架首先引入了压缩比(CR)自适应SC(CRSC)模型,能够根据帧是静态还是动态的,能够调整CR,并有效地保存光谱资源。此外,我们实施了一个对象检测和语义分割模型启用的传感(OSMS)方案,该方案可以智能地感知场景中的变化并通过封闭式分析评估每个帧的重要性。因此,OSMS方案根据实时感应结果为CRSC模型提供CR提示。此外,CRSC和OSM都设计为轻量级型号,可确保与实用边缘应用中常用的资源受限传感器的兼容性。实验模拟验证了所提出的SCCVS框架的有效性,证明了其提高传输效率的能力而无需牺牲关键的语义信息。
近年来,视觉变形金刚(VIT)已成为计算机视觉任务(例如图像分类,对象检测和分割)的强大而有前途的技术。与依赖层次特征提取的卷积神经网络(CNN)不同,VIT将图像视为斑块和杠杆自我发项机制的序列。但是,它们的高计算复杂性和内存要求对资源受限的边缘设备部署构成重大挑战。为了解决这些局限性,广泛的研究集中在模型压缩技术和硬件感知加速策略上。尽管如此,一项全面的审查系统地将这些技术及其在精确,效率和硬件适应性方面进行了对边缘部署的适应性的权衡。这项调查通过提供模型压缩技术的结构化分析,用于推理边缘的软件工具以及VIT的硬件加速策略来弥合此差距。我们讨论了它们对准确性,效率和硬件适应性的影响,突出了关键的挑战和新兴的研究方案,以推动Edge平台上的VIT部署,包括图形处理单元(GPU),张量处理单元(TPU)(TPU)和现场编程的门阵列(FPGAS)。目标是通过当代指南,以优化VIT,以在边缘设备上进行有效部署,以激发进一步的研究。
近年来,视觉变形金刚(VIT)已成为计算机视觉任务(例如图像分类,对象检测和分割)的强大而有前途的技术。与依赖层次特征提取的卷积神经网络(CNN)不同,VIT将图像视为斑块和杠杆自我发项机制的序列。但是,它们的高计算复杂性和内存要求对资源受限的边缘设备部署构成重大挑战。为了解决这些局限性,广泛的研究集中在模型压缩技术和硬件感知加速策略上。尽管如此,一项全面的审查系统地将这些技术及其在精确,效率和硬件适应性方面进行了对边缘部署的适应性的权衡。这项调查通过提供模型压缩技术的结构化分析,用于推理边缘的软件工具以及VIT的硬件加速策略来弥合此差距。我们讨论了它们对准确性,效率和硬件适应性的影响,突出了关键的挑战和新兴的研究方案,以推动Edge平台上的VIT部署,包括图形处理单元(GPU),张量处理单元(TPU)(TPU)和现场编程的门阵列(FPGAS)。目标是通过当代指南,以优化VIT,以在边缘设备上进行有效部署,以激发进一步的研究。
摘要。生物碳泵(BCP)包括将有机碳从表面转移到深海的各种过程。这导致了长期的碳固执。没有BCP,AT-MospherCO 2浓度将高约200 ppm。 这项研究表明,中尺度和子尺度的海洋动力学可能会对颗粒有机物(POM)垂直分布产生重大影响。 我们的结果表明,诸如中尺度涡流之间的强烈尺度额叶区域可能导致从混合层深度(MLD)(MLD)向中质区域的重要积累和POM转运。 要得出这些结论,采用了多方面的方法。 它进行了原位测量和来自配备有水下视觉效果器(UVP6),卫星高度学数据和Lagrangian diag-Nostics的BGC-Argo河口的海洋积雪图像。 我们将研究重点放在非洲西南开普盆地17个月长的射流任务中观察到的三个强烈的雪分布特征。 这些特征位于中尺度涡流之间的额叶区域。 我们的研究表明,由额叶生成驱动的机制诱导的颗粒损伤泵具有通过增加将碳注入到水柱中的深度来增强生物泵的有效性。 这项工作还强调了建立针对涡流之间接口区域的重复采样活动的重要性。 这可以改善我们的没有BCP,AT-MospherCO 2浓度将高约200 ppm。这项研究表明,中尺度和子尺度的海洋动力学可能会对颗粒有机物(POM)垂直分布产生重大影响。我们的结果表明,诸如中尺度涡流之间的强烈尺度额叶区域可能导致从混合层深度(MLD)(MLD)向中质区域的重要积累和POM转运。要得出这些结论,采用了多方面的方法。它进行了原位测量和来自配备有水下视觉效果器(UVP6),卫星高度学数据和Lagrangian diag-Nostics的BGC-Argo河口的海洋积雪图像。我们将研究重点放在非洲西南开普盆地17个月长的射流任务中观察到的三个强烈的雪分布特征。这些特征位于中尺度涡流之间的额叶区域。我们的研究表明,由额叶生成驱动的机制诱导的颗粒损伤泵具有通过增加将碳注入到水柱中的深度来增强生物泵的有效性。这项工作还强调了建立针对涡流之间接口区域的重复采样活动的重要性。这可以改善我们的
机器学习在解决各个领域的综合任务方面表现出了非凡的能力。硬件加速器的进步已使机器学习模型在边缘设备上的部署,从而促进了资源约束系统中的实时AI应用程序。最近的加速器越来越多地采用了芯片上的网络(NOC)体系结构,以支持大规模处理元件阵列中的大规模数据通信。但是,随着这些加速器的复杂性继续增长,硬件原型制作变得有效的设计空间探索变得有效。此外,在各种机器学习工作负载之间实现高灵活性和效率仍然是一个重大挑战,尤其是对于边缘计算而言。为了解决这些问题,我们从架构侧和应用程序侧探索。首先,我们为基于NOC的深神经网络(DNN)加速器引入了一个周期精确的仿真工具。此模拟器通过探索设计参数来快速而精确地评估推理效率。通过将详细的性能跟踪到系统行为中,模拟器促进了DNN推理效率的优化,这可以减少与硬件原型制作相关的时间和成本。然后,我们专注于基于NOC的DNN加速器的新型体系结构设计,杠杆内网络处理技术,以改善端到端延迟和资源利用率。第三部分探讨了机器学习在嵌入式传感器系统中的应用,重点是下limb假体。提出了两种关键方法:在网络设计中的激活设计,可将非线性操作卸载到NOC,并进行汇总的随身携带设计,以最大程度地减少汇总层的通信开销。这些设计证明了现有基于NOC的加速器体系结构的处理效率的实质性提高,同时保持了对各种DNN工作负载的范围和适应性。开发了可穿戴压力测量系统,以收集和分析货物内压力数据。提出了两个机器学习应用程序,用于在舒适的假肢设计领域求解子任务。开发了一种基于聚类的方法,用于通过减少重新播放的同时维护数据完整性来优化传感器部署。采用了使用多个隐藏马尔可夫模型和高斯混合模型的步态相识别方法。所提出的步态识别方法实现了高精度和计算效率,这表现优于常规技术。通过应对基于NOC的加速器设计和机器学习应用程序的挑战,我们弥合了硬件优化和实际部署之间的差距。这些技术将为嵌入式智能的未来进步铺平道路。