我们使用开发的AI搜索引擎(Invdesflow)对环境稳定的超导氢化物进行了广泛的研究。一个立方结构li 2 auh 6具有Au-H八人体图案的auh 6被确定为候选者。进行热力学分析后,我们提供了可行的途径,以通过已知的LIAU和LIH化合物在环境压力下实验合成该材料。第一个原理计算表明,在环境压力下,Li 2 Auh 6显示了高超导过渡温度(T C)〜140 K。H-1的电子与Au-H八人体的振动和Li原子的振动的声子模式强烈,在其他以前类似的情况下,后者并未认真对待后者。因此,与以前搜索金属共价键以发现高t c超导体的主张不同,我们在这里强调了那些具有强电子偶联(EPC)的声子模式的重要性。,我们建议一个人可以插入二元或三元氢化物中,以引入具有强EPC的更多潜在的声子模式,这是一种有效的方法,可以在多组分化合物中找到高t c超导体。
是由高t C镍超导体最近快速进步的动机,我们全面研究了交替的双层三层式镍7 ni 5 o 17的物理特性。该材料的高对称阶段,没有氧气八面体的倾斜,在环境条件下不稳定,而是在高压下变得稳定,在高压下出现了由d 3 z 2-r 2状态组成的小孔袋γ0。在我们以前针对TriLayer LA 4 Ni 3 O 10的工作中确定了这个口袋对于发展超导性很重要。此外,使用随机相近似计算,我们在压力下找到了高对称相的领先S±配对状态,其配对强度与以前在BiLayer La 3 Ni 2 O 7化合物中获得的配对强度相似,这表明具有相似或更高的超导导过渡温度t c。此外,我们发现驱动该配对状态的系统中的主要磁波动在平面内以及顶部和底部三层和双层均匀的平面之间具有抗铁磁结构,而中间三层层则是磁性脱耦的。
超导体中的涡旋可以帮助识别出现现象,但是涡流的基本方面(例如它们的熵)仍然很众所周知。在这里,我们通过测量磁耐药性和对超薄纤维(≤2个单位细胞)的磁性抗性和Nernst效应,研究了不足的BI 2 SR 2 CACU 2 CACU 2 O 8+X中的涡旋熵。我们从具有不同掺杂水平的样品上的磁传输测量中提取伦敦穿透深度。它揭示了超级流动相位刚度ρs与超级传导过渡温度t c线性缩放,直至极不足的情况。在相同批次的超薄纤维上,我们通过芯片温度计测量Nern的效果。一起,我们获得了涡旋熵,并发现它用t c或ρs呈指数衰减。我们进一步分析了高斯超导波动框架中t c上方的nernst信号。在二维极限中电气和热电测量的组合提供了对高温超导性的新见解。
kagome晶格是调查电子相关性,拓扑和沮丧磁性相互作用的凝结物理学的重要基本结构。在AV 3 SB 5(A = K,RB,CS)家族中对Kagome金属的最新工作显示出了许多相关驱动的扭曲,包括在低温下对称性断裂电荷密度波和列明超导性。在这里,我们研究了新的Kagome Metal YB 0.5 CO 3 GE 3,并在电阻率中找到了与AV 3 SB 5行为高度相似的温度依赖性扭结,并且与Co Kagome Lattice的平面结构失真相称,以及C-轴的两倍。在过渡温度以下,空间群从P 6 / mmm到P 6 3 / m较低,打破了平面镜面和C 6旋转,同时沿着C方向获得螺钉轴。在非常低的温度下,观察到各向异性负磁磁性,这可能与各向异性磁性有关。这引发了有关Kagome网中扭曲的类型及其所致的物理特性(包括超导性和磁性)的问题。
最近,在扭曲的WSE 2 Moir´e结构中观察到了超导性(Xia等,Arxiv:2405.14784; Guo等,Arxiv:2406.03418)。它的过渡温度很高,达到了费米温度尺度的百分之几。在这里,我们基于电子拓扑可以在适当的介导相关性方面实现量子波动的概念提出了一种超导性的机制。在此制度中,库仑相互作用要求将主动拓扑平面带和附近的较宽的频带一起考虑在一起。紧凑的分子轨道出现,通过拓扑结构与其他分子轨道进行拓扑杂交经历量子波动。杂交与主动平面带的自然趋势竞争静态序列的自然趋势,从而削弱了后者。我们通过实验将此效果与某些显着的观察联系起来。此外,竞争产生了丢失的量子的量子临界状态。相应的量子临界波动驱动超导性。更广泛的含义和相关材料平台之间的新联系。
摘要。额环开环的分解聚合(FromP)是一种快速,低能的制造反应,可用于治疗热固性材料。div> dicyclopentadiene(DCPD)导致聚(双环戊二烯)(p(dcpd)),这是一种具有出色机械性能和化学稳定性的坚硬热固性。像大多数热眠者一样,P(DCPD)无法重新处理,因此很难回收。以前的工作表明,将少量可切合单元掺入P(DCPD)网络的链段中,可以使其解构。在这里,我们报告说,在FromP中,在市售的多功能共聚物(DHF)2,3-二氢呋喃(DHF)既可以充当有效的Grubbs催化剂抑制剂,并引入了可裂解的酸性单元。所得材料保留高性能特性,包括115-165°C的玻璃过渡温度和35-40 MPa的弹性模量。在临界载荷水平上方添加DHF可以实现可解构的热固性。我们进一步展示了通过额叶聚合的自由形式的3D打印。
fe(ii)自旋跨界(SCO)复合物是分子,其中Fe原子周围的八面体配体场的强度在该领域中,即使温度1-5或磁场的变化,也可以在这些分子中触发旋转状态过渡。9–15在低温下,当T 2G和E G轨道之间的八面体配体场分裂(D OCT)很高时,SCO综合体占据了Diamagnetic(S = 0)低旋转状态(LS)。但是,在温度高于临界过渡温度t c的温度下,当t 2g和e g轨道之间的D OCT降低时,这些分子占据了顺磁性(s = 2)高旋转状态(HS)。14,16–20由于在Fe(II)的SCO复合物以及这些旋转状态的双态性中可以实现此类自旋状态过渡的方便,因此9,21,22这些分子可以使室温旋转的旋转特性构成很好的候选(因为触发了旋转状态过渡的室温,因此很大程度上是可触发旋转状态的过渡,而不是很大程度上是可实现的),并且不可能实现23-25,并且VER且VERIOL无效),并且V-25和23-25。26–28室温磁的存在
通常称为5CB,4-甲氧-4'-戊苯基是具有化学式C18H19N的列液晶体。它首先由乔治·威廉·格雷(George William Gray),肯·哈里森(Ken Harrison)和J.A.合成。纳什(Div> Nash)于1972年在赫尔大学(University of Hull),当时是氰基苯基的第一位成员。[1] [2] 5CB分子在22.5°C下从晶体到列相的相变长20Å,并在35.0°C下从列中到同性恋态。尽管由于其低过渡温度向各向同性及其狭窄的列相范围而不适合LCD,但它仍然是基础研究中最常用的列表之一。这是阳性介电各向异性材料的参考材料之一,并且可用的物理数据量最多。碳纳米管是由滚动石墨烯片制成的管状结构。作为许多纳米颗粒,对它们进行了研究,以便在其他材料中使用和插入以改善其电气[3-5]或生物学[6]特性,但也作为光电和磁化器件中高级材料的掺杂剂[7-12]。,为了适当使用,必须将它们作为单个颗粒作为单个颗粒进行研究,而不是像它们表现出完全不同的行为的大部分。许多
已经进行了一项研究,以制造和化学修改Torlon®4000T和Torlon/p84共聚酰胺 - 酰亚胺混合的空心纤维作为异丙醇(IPA)脱水的新材料。已经发现,Torlon/p84混合物是可混杂的,正如通过单玻璃过渡温度(T G S)确认的,这些温度(T G S)通过差分扫描量热法(DSC)检测到。由干式湿旋转工艺制造的纯和混合空心纤维都不显示出对抑制水和IPA诱发的肿胀的能力,而交联的纯Torlon空心纤维仅显示边缘改善。然而,借助p- xylenadiamine,Torlon/P84混合纤维在化学交联修饰后表现出增强的分离性能。据信P- Xylenenediamine诱导的交联反应会导致更大的链条堆积和自由体积的减少。对于85/15 wt。%ipa/h 2 o进料溶液,获得的最高分离系数为185±8,所获得的总渗透量为1000±45 g/m 2 h。 ©2007 Elsevier B.V.保留所有权利。
通过对氨基酸组成的极为精确的控制,用于特定应用。ELR被激发到弹性蛋白序列中,使它们获得了其几种有趣的特性,因此,ELR已成为多种生物应用应用的有用候选[14-16],显示出极好的生物相容性[17],生物降解性和可调节的机械性能和可调节的机械性能。对于3D生物打印应用,更有趣的是,它们表现出由所谓的反温度转变(ITT)定义的热反应性的智能行为。so,在重组剂的水溶液中,低于重组者的过渡温度(TT),聚合物链仍然可溶于由疏水水合构成的随机线圈。如果温度升高到聚合物的TT以上,则诱导疏水性折叠[18],当使用高浓度时会导致水凝胶形成。可以将这种可逆的相变为3D架构矩阵。在设计ELR必须表现出的分子结构以表现为墨水时的难度在于在其自组装过程中诱导可打印性和稳定性的特性,使其自由组装成超分子水凝胶。因此,我们的研究假设是