步态障碍是帕金森氏病(PD)患者最常见的症状之一,与临床不良结局密切相关。最近,基于视频的人类姿势估计(HPE)技术吸引了与基于标记基于标记的3D运动捕获系统更便宜,更简单的方法进行步态分析的方法。然而,尚不清楚基于视频的HPE是否是测量PD患者的临时和运动步态参数的可行方法,以及该功能如何随相机位置而变化。在这项研究中,使用运动捕获系统和两个智能手机摄像机测量了24例早期PD患者的跑步机和地面步行,并放置在受试者的近额和外侧侧面。我们比较了从3D运动捕获系统和无标记的HPE获得的关节位置数据之间的暂时步态参数和运动学特征的差异。我们的结果证实了使用HPE的PD患者的Ana-lyzing步态的可行性。尽管脚后跟和脚趾清晰可见的近额外视图对于估计时间步态参数有效,但横向视图特别适合评估空间步态参数和关节角度。,在侧面记录不可行的临床环境中,近额外的视图记录仍然可以作为运动捕获系统的实际替代方法。
用于恢复手机功能的脑机界面(BMI)临床翻译的关键因素将是其任务变化的稳健性。具有功能性电刺激(FES),例如,患者的手将用于在其他相似运动中产生各种力量。为了调查任务变更对BMI性能的影响,我们训练了两个恒河猕猴,用身体的手控制虚拟手,同时我们将弹簧添加到每个手指组(索引或中环或中小型小组)或改变其手腕姿势。使用同时记录的心脏内神经活性,手指位置和肌电图,我们发现跨环境中预测手指运动学和与手指相关的肌肉激活导致预测误差的显着增加,尤其是肌肉激活。但是,关于在线BMI对虚拟手的控制,更改培训任务上下文或在线控制过程中手的身体上下文对在线绩效的影响很小。我们通过表明神经种群活动的结构在新情况下仍然相似,从而解释了这种二分法,这可以在线快速调整。此外,我们发现神经活动在新环境中与所需的肌肉激活成正比移动,可能解释了偏见的运动学预测,并提出了一种可以帮助预测不同幅度肌肉激活的特征,同时产生相似的运动学。
机器人手臂任务中的感知技术。通过分析机器人臂的运动学并设计双臂合作系统,将视觉点云技术结合起来,实现双臂合作握把,并通过使用ROS平台来验证合作社CON-TROL策略的有效性,从而构建双臂臂系统的实验平台。主要研究内容包括分析机器人ARM运动学的正和反向运动学模型,视觉点云识别在双臂合作任务中的应用,双臂合作控制策略的实现以及合作掌握的实验结果和分析。通过这项研究,成功设计和实现了基于ROS的双机器人臂合作感,并实现了双臂合作控制策略的有效性。
摘要-由于多种现代雷达系统的高分辨率,扩展目标的跟踪吸引了越来越多的文献。在随机矩阵框架中提出了一种完全贝叶斯解决方案。本文分析了多个传感器获得的检测融合。提出了四种不同的方法来跟踪和联合估计运动学和范围参数。它们都使用相同的多传感器运动学矢量测量更新。第一种方法基于范围状态概率密度函数的粒子近似,而其他三种方法基于后者的逆 Wishart 表示。广泛的模拟评估了不同方法的性能。基于粒子滤波器的方法获得了最佳性能,但计算负担增加了。基于多传感器泛化的两种更新具有可比的性能,而基于融合近似的更新获得了最差的性能。
课程内容: 模块 1:基本概念 游戏物理 – 游戏引擎(简介)- 物理真实感 – 在游戏中的重要性、物理概念和游戏性能、基础知识 – 坐标系和参考系、标量和矢量、计算矢量大小、矢量叉积、矩阵 – 乘法和旋转、导数。 模块 2:基本牛顿力学和运动学 牛顿三运动定律 – 惯性 – 力 – 质量 – 加速度相等和相反的力、力矢量、力的类型 – 引力 – 摩擦力 – 向心力 – 力平衡和图表、功、能量 – 动能 – 势能 – 守恒 – 功率、平移运动 – 运动方程、旋转运动 - 扭矩 – 角加速度、2D 粒子运动学、3D 粒子运动学、刚体动力学。模块 3:抛射物抛射物属性、简单轨迹和重力、阻力、马格努斯效应 - 抛射物的旋转效应、游戏中的特定抛射物类型 - 炮弹 - 子弹 - 箭、可变质量。模块 4:碰撞:冲量和动量原理 - 线性和角冲量、弹性和非弹性碰撞冲击、恢复系数、碰撞方向和检测、与可移动和不可移动物体的碰撞、与摩擦的碰撞、2D 和 3D 碰撞、游戏应用。模块 5:物理建模:游戏车辆的物理学(飞机、轮船和小船、汽车和气垫船、枪支和爆炸、运动)教科书:1. 游戏程序员的物理学,
摘要 - 行业中的操纵者日益普及的人增加了对操纵器的运动学和动态知识的掌握的需求。另一方面,操纵器是为了学习目的而不是负担得起的物品,因此建模是正确的解决方案之一,也是一种新的贡献形式来引入物理操纵器,而无需在实验室中进行许多操纵器。通过这项工作,可以将4度(DOF)操纵器的4度操纵器的物理建模与其原始形式作为教育机器人类似,并且可以设计仪表板来控制其运动。使用Autodesk Inventor开发了操纵器的机械物理模型,并且使用图形用户界面(GUI)MATLAB进行操作参数的设置。使用的操纵器模型是Dobot Magician,它具有四个Revolute关节。使用Autodesk Inventor设计工具进行建模的优势是直观的用户界面,易于理解和无学生许可,因此,它比学生(例如在现有研究中)对学生更友好。作为一种学习媒体,这种建模非常复杂,可以学习机械设计,在SIMSCAPE多机上使用XML(可扩展的标记语言)扩展转换为MATLAB,在SIMSCAPE上设置了运动学和动力学,并在MATLAB上使用GUI设计控制界面。这项工作通过基于前向运动学和反向运动学方法的GUI设定的路径计划方法证明了机器人运动的准确性。
摘要 - 人手的错综复杂的运动学能够同时抓握和操纵多个对象,这对于诸如对象传递和手持操作等任务必不可少。尽管具有重要意义,但机器人多对象抓握的领域是相对尚未探索的,并且在运动学,动力学和对象配置方面面临着显着的挑战。本文介绍了Multigrasp,这是一种新型的两阶段方法,用于在桌面上使用灵巧的多指机器人手抓住多物体。该过程包括(i)生成pre-grasp提案,以及(ii)执行掌握和提起对象。我们的实验重点主要是双对象抓地力,达到了44.13%的成功率,突出了对新对象配置的适应性和不精确的掌握能力。此外,该框架证明了以推理速度为代价的两个以上对象的潜力。
主动上肢外骨骼是神经恢复的潜在强大工具。该潜力取决于几种基本控制模式,其中一种是透明度。在这种控制模式下,外骨骼必须遵循人类运动而不会改变它,从理论上讲,这意味着无效的相互作用工作。达到透明度的水平高,尽管不完美,既需要一种适当的控制方法,又需要对外骨骼对人类运动的影响进行深入评估。本文基于识别外骨骼动力学的识别,或者是在力反馈控制或结合下引入了三种不同的“透明”控制器的评估。因此,这些控制器可能会通过设计明显诱导不同水平的透明度。进行的调查可以更好地理解人类如何适应一定是不完事的透明控制器。一组14名参与者受到这三个控制者的束缚,同时在副臂平面进行运动。随后的分析是根据相互作用,运动学,肌电图和人体工程学反馈问卷进行的。结果表明,在执行透明的控制器较少的情况下,参与者的策略往往会引起相对较高的相互作用工作,并具有较高的肌肉活动,从而导致运动学指标的敏感性很小。换句话说,截然不同的残留互动工作并不一定会引起非常不同的运动运动学。这样的行为可以通过自然的人类倾向来解释以维护其首选的运动学的努力,应在将来的透明控制器评估中考虑到这一点。