所有核电站发电成本低的最重要因素是长期运行期间实现的容量系数。为了在工厂运行寿命期间实现高容量系数,必须有一个高效的预防性维护和检查计划以及一个记录良好的操作制度。这些措施有助于最大限度地减少计划外任务和停机。从长远来看,实施高效、明确的维护、检查和操作流程可减少所需的员工数量。最佳人员配置计划可确保在需要时有合格的员工可用,提供获得在职经验的机会,并避免过多人员的参与以及由此产生的额外人为错误风险。
有几个原因导致核电运行寿命延长而缺乏经济优势。需要大量的翻新费用,如果没有这项新投资,核电就无法实现安全的长寿命运行。当可再生能源完全重建以实现与核电类似的项目寿命时,由于技术不断改进,它们的重建成本会大大降低,而大规模核电技术的成本由于其成熟度而没有显著改善。此外,由于核电部署的准备时间较长,核电技术运行寿命后半段实现的有限成本降低(当原始资本投资不再偿还时)要到 45 年后才能实现,与现在可以部署的其他选项相比,它们对消费者的价值大大降低。
所有核电站发电成本低的最重要因素是长期运行期间实现的容量系数。为了在工厂运行寿命期间实现高容量系数,必须有一个高效的预防性维护和检查计划以及一个记录良好的操作制度。这些措施有助于最大限度地减少计划外任务和停机。从长远来看,实施高效、明确的维护、检查和操作流程可减少所需的员工数量。最佳人员配置计划可确保在需要时有合格的员工可用,提供获得在职经验的机会,并避免过多人员的参与以及由此产生的额外人为错误风险。
所有核电站发电成本低的最重要因素是长期运行期间实现的容量系数。为了在工厂运行寿命期间实现高容量系数,必须有一个高效的预防性维护和检查计划以及一个记录良好的操作制度。这些措施有助于最大限度地减少计划外任务和停机。从长远来看,实施高效、明确的维护、检查和操作流程可减少所需的员工数量。最佳人员配置计划可确保在需要时有合格的员工可用,提供获得在职经验的机会,并避免过多人员的参与以及由此产生的额外人为错误风险。
电子组件是由不同材料组合组成的复杂系统,这些系统会随着第二种热力学定律的变化而发生变化。其质量或功能的损失在降低的电子组件的性能或行为中反映出,这可能会导致其运行寿命的失败。因此,了解材料降解的物理学以及导致其确保组件可靠性的因素至关重要。本文着重于包装材料的降低物理学,这些物理通常暴露于环境和操作负载。本文的内容分为三个部分。首先,提出了包装技术和封装材料的概述。然后,审查了最常见的降解因素和与包装相关的故障模式。最后,讨论了硬件要求,包括专门的传感器,测量技术和数字双胞胎,以捕获降解效果并促进小电子级别的健康监测。
目前,大多数输电系统都使用高安全系数来限制通过系统的电流,这些安全系数基于基础设施在季节性或整个运行寿命期间可能遇到的最极端天气条件。这可以避免在极端天气下系统过载过多电力,因为极端天气下过热可能会损坏基础设施或因过热下垂的线路而引发野火。虽然这些安全系数在极端条件下必不可少,但它们会大幅减少特定线路上传输的电力(即降低其容量)。但是,如果实时监控线路,则可以在大多数天气条件下实现更高的容量。诸如来自输电塔的 LiDAR 成像、线路传感器或来自附近气象站的数据等技术可以监控实时线路温度并预测未来温度,以便操作员可以最大限度地提高整个系统的电力流。
有 30 多个国家正在利用核能发电。2000 年,核能占总发电量的比重从法国的 76% 到巴西的 1.4% 不等。阿根廷、中国、捷克共和国、伊朗伊斯兰共和国、日本、韩国、俄罗斯联邦、罗马尼亚、斯洛伐克和乌克兰继续建造 31 座新核反应堆。中国、朝鲜民主主义人民共和国、印度、伊朗伊斯兰共和国、日本、韩国和俄罗斯联邦的国家能源计划设想建造更多的反应堆。11 月,芬兰公用事业公司 TVO 申请政府“原则上”决定建造第五座核电站。这是多年来西欧首次提出此类倡议。另一方面,德国政府和公用事业公司达成协议,逐步淘汰德国的 19 座核电站。该协议允许核电站的平均运行寿命为 32 年。