一系列卡宾-金-乙炔配合物 [(BiCAAC)AuCC] n C 6 H 5 − n ( n = 1,Au1;n = 2,Au2;n = 3,Au3;BiCAAC = 双环(烷基)(氨基)卡宾) 已被高产率合成。化合物 Au1–Au3 呈现深蓝色至蓝绿色磷光,在所有介质中量子产率高达 43%。金配合物 Au1–Au3 中 (BiCAAC)Au 部分的增加会增加紫外可见光谱中的消光系数和更强的振子强度系数,理论计算支持这一点。发光辐射速率随着 (BiCAAC)Au 部分的增加而降低。时间相关密度泛函理论研究支持磷光的电荷转移性质,这是因为单重态(S 1 )和三重态(T 1 )之间的能隙很大(0.5–0.6 eV)。瞬态发光研究揭示了非结构化紫外瞬时荧光和 428 nm 振动分辨长寿命磷光的存在。有机发光二极管 (OLED) 采用物理气相沉积法制成,以 2,8-双(二苯基磷酰基)二苯并[b,d]呋喃 (PPF) 作为主体材料,与复合物 Au1 反应。在 405 nm 处观察到近紫外电致发光,器件效率为 1%,同时在 10 尼特的实际亮度下 OLED 器件寿命 LT 50 长达 20 分钟,表明一类非常有前景的材料可用于开发稳定的紫外 OLED。
从二维 (2D) 分子构建富含 sp3 的三维 (3D) 支架极具挑战性,但对有机合成和药物发现项目有重大影响。1 [4 + 2] 环加成反应被认为是实现此目的的有力工具,其中两个新的 s 键和一个 p 键由两个简单的不饱和反应组分二烯和亲二烯体在 3D 六元环拓扑中形成(图 1a)。2,3 事实上,这种热允许过程多年来一直是一种基本反应类型,展示了其分子复杂性产生能力。4 在这方面,多环芳烃如萘也含有交替双键。此外,它们是丰富且廉价的原料化学品。 5 然而,这些 2D 分子在 3D 复杂环加成反应中的应用有限,因为与破坏芳香性(共振能量 = 80.3 kcal mol −1 )和选择性(图 1b 和 c)赋予的稳定性相关的严峻挑战。 6 典型的萘热 [4 + 2] 环加成需要苛刻的反应条件(高温高达 210 C,压力高达 10 3 atm),7
背景:1型糖尿病(T1DM)是一种慢性自身免疫性条件,由于氧化应激和代谢失调,可能导致长期并发症。二氧酶-1(PON-1)是一种与高密度脂蛋白(HDL)相关的酶,具有双重活性:芳基酯酶和乳糖酶。这些活动可保护脂质免受氧化损伤。T1DM儿童中PON-1的功能状态可以提供有关氧化应激与酶保护作用之间关系的见解。本研究旨在评估伊拉克T1DM儿童中PON-1的芳基酯酶和乳糖酶活性。方法:招募了67名T1DM的儿童,并与57个年龄匹配的健康对照组进行了比较。测量芳基酶和lactonase的酶促活性以评估PON-1的功能状态。计算二氧化氧酶-1/HDL(PON/HDL)比例以评估脂质保护和抗氧化能力。氧化状态。结果:PON-1活性分析显示,患者组的芳基酶(2.36±1.17)和乳糖酶(21.9±7.31)显着降低,与对照组相比(芳基酶= 4.54±1.84,lactonase = 29.51±9.92)。TOS和OSI明显更高,而患者组的TA则显着降低。Pearson相关性显示HDL-C和芳基酶之间存在正相关(P = 0.002,r = 0.379),HDL-C和LACTONAPE(P = 0.040,r = 0.366)。结论:降低的PON-1活性与T1DM有关,表明增强PON-1或减少氧化应激可能有助于预防糖尿病并发症并改善心血管健康。关键字:抗氧化活性,二氧化烷酶-1,芳基酶,乳糖酶,氧化损伤,I型糖尿病。
摘要 本文从所有可能的角度研究了向量空间中的线性伊藤随机微分方程。在这种情况下,势向量描述了作用于量子系统的经典噪声的大小。该向量势可以表示为其参数的线性函数,其中厄米算子作为其系数,因为其参数被假定为未知的。对于二阶扰动,可以借助势扰动参数确定幺正演化算子。至于第二项,它写成关于布朗运动的双迭代随机积分,而第一项写成伊藤随机积分。在控制量子系统时,来自环境的噪声可能是一个主要障碍;这种技术可以提供帮助。通过学习检测和调节噪声,提高计算机等量子技术的可靠性和实用性。如果势的参数受到噪声的影响,那么它们的可靠性就会降低。我们重点关注特殊情况,即势能是这些参数的线性函数,以厄米算子为系数。为了找到达到 O ( ǫ ) 的幺正演化算子,我们可以将 O ( ǫ ) 项写为关于布朗运动的伊藤随机积分,将 O ( ǫ 2 ) 项写为关于布朗运动的双迭代随机积分。
通过催化木质素去聚物的产生芳香单体的努力在历史上一直集中在芳基 - 醚键裂解上。然而,木质素中很大一部分的芳族单体与各种碳 - 碳(C - C)键相连,这些碳(C - C)键更具挑战性地裂解和限制木质素去聚合物的芳族单体产量。在这里,我们报告了一种催化自氧化方法,以从木质素衍生的二聚体和松树和杨树中的低聚物中裂解C - C键。该方法将锰和锌硅盐用作乙酸中的催化剂,并产生芳香族羧酸作为主要产物。在工程化的假单胞菌putida kt2440的菌株中,将含氧单体的混合物有效地转化为顺式 - 核酸,该菌株在4位时进行芳族O-二甲基化反应。这项工作表明,使用MN和ZR的木质素自氧化提供了一种催化策略,以提高木质素的宝贵芳族单体的产量。
作者对原始稿件中遗漏通讯作者王荣芳的电子邮件地址深表遗憾。王荣芳的电子邮件地址为 rfwang@qust.edu.cn。英国皇家化学学会对这些错误以及由此给作者和读者带来的任何不便深表歉意。
和分子结构,包括离子键,共价键和MO方法。他们还将学习P块和过渡元素(3D系列)的比较研究,以及协调化学和电化学。它将以对芳族碳氢化合物,有机金属和芳基卤化物的基本理解来丰富学生。
程序委员会:Craig B. Arnold,普林斯顿大学(美国);马丁纳斯·贝雷斯纳大学南安普敦(英国); Laura Gemini,ALPhANOV(法国);长谷川聪,宇都宫大学中心。光学研究与教育(日本); Guido Hennig,Daetwyler Graphics AG(瑞士); Jürgen Ihlemann,哥廷根纳米光子研究所(德国);伊藤佑介,大学。东京(日本);牧村哲也,大学筑波(日本); Inka B. Manek-Hönninger 中心激光强度与应用(法国);卡洛斯·莫尔佩塞雷斯大学马德里理工大学(西班牙);米格尔·莫拉莱斯,大学。马德里理工大学(西班牙);中田芳树,大阪大学(日本); Aiko Narazaki,日本产业技术综合研究所 (日本);Beat Neuenschwander,伯尔尼高等技术学院 (瑞士);Jie Qiao,罗彻斯特理工学院 (美国);Gediminas Raciukaitis,物理科学与技术中心 (立陶宛);Joel Schrauben,MKS 仪器公司 (美国);Felix Sima,罗马尼亚国立激光、等离子体和辐射研究所 (罗马尼亚);Paul Somers,卡尔斯鲁厄理工学院 (德国);Koji Sugioka,日本理化学研究所先进光子学中心 (日本);Mitsuhiro Terakawa,庆应义塾大学 (日本);Onur Tokel,比尔肯特大学 (土耳其);Xianfan Xu,普渡大学 (美国)