1。我们是东南亚国家协会(东盟)协会的成员国,于2024年10月9日聚集在老挝人民民主共和国的万象人民民主共和国(LAO PDR),在老挝PDR主席下,第44届东盟和第45届东盟峰会。峰会由H.E.主持。老挝PDR总理Sonexay Siphandone先生,并按照东盟宪章召集。2。我们重申了对老挝人民东盟主题的支持,以东盟为主题:增强连接性和韧性,重点是通过整合经济,锻造包容性和可持续的未来来增强连通性,并改善数字时代,并通过支持Asean Community Vision 2045的发展,并增强其战略性的诉讼,以增强其战略性的环境,以实现其战略性的计划,以促进其战略性的竞争,并提高了战略性的竞争,并提高了战略性的努力,并促进了战略性的努力,并促进了竞争的努力,并促进了战略性的努力,并促进了竞争力,并促进了战略性的努力,使得竞争效果,使得竞争效率和稳定性,使得与其战略性融合了,以实现其战略性,并在战略上促进了社会的发展。儿童,并加强卫生系统。我们强调了这些努力在建立一个更具联系和韧性的东盟社区中的重要性,该社区准备抓住未来的机会并克服挑战。我们强调了维持和促进东盟内部以及与外部合作伙伴的合作与协作以实现这些目标的重要性。
开始安装之前,请检查存储系统与所选逆变器的兼容性。存储单元仅与ET系列(GW5-10K)的较小型号兼容。对于BT和ET系列,LI SV1也需要至少4个电池模块。我们的兼容性列表中的信息始终是决定性的。兼容性AY10785和AY10786固件版本v1.5或BMS变体AY10785和AY10786所需的固件版本。要安装更新,请将记录器连接到W-LAN,并让我们知道记录器号。然后,我们可以为您安装更新。另外,我们可以根据要求发送电缆以连接到笔记本电脑,以便您可以离线安装更新。另外,可以更换逆变器和存储系统之间的通信电缆。我们很乐意根据要求向您发送适当的电缆。3.2通信电缆
在这种情况下,巴林RCSI医科大学的校长Sameer Otoom教授肯定了je下Ham下Hamad Bin Isa Al Khalifa和他的皇家殿下Salman Bin Hamad Al Khalifa,王储和总理的皇家王储和总理的皇家王子Bin Hamad Al Khalifa的坚定支持,以继续增强和增强其教育的过程,并充实其Unichichication Computication Comecation Comecation Comecation Commessemes。Sameer Otoom教授对他的皇后王子殿下和总理表示感谢,他对仪式的赞助表示感谢,并感谢最高卫生委员会主席Shaikh Mohammed Bin Abdulla Abdulla Al Khalifa中将阁下,他的阁下因参加了仪式。The ceremony proceedings brought together Professor Sameer Otoom, President of RCSI Medical University of Bahrain, and Mr Ghazi Abdulla Nass, Executive Director, Nass Corporation B.S.C., for the signing of the contract between Nass Contracting Company W.L.L and the RCSI Medical University of Bahrain, as well as the commissioning of the University's campus expansion project, cementing the commitment of both parties to advancing a巴林经济愿景2030年的可持续未来。
11 1 Eren Balevi,Akash Doshi,Ajil Jalal,Alexandros DiMakis,Jeffrey G. Andrews,“使用深层生成网络的高维通道估计”,IEEE JSAC,2021年; 2 RP-213599,“新SI:NR空气界面的人工智能研究(AI)/机器学习(ML)”,3GPP RAN PLENARY,2021年; 3 Chao-kai Wen,Wanting Shih,Shi Jin,“大量Mimo CSI反馈的深度学习”,IEEE无线通讯,2018年;
2。物联网在流线型的自动可持续性报告中起关键作用。随着这些和即将到来的公司可持续性法规即将在全球范围内生效,公司越来越多地研究可持续性数据管理解决方案和物联网,以简化和自动化其可持续性数据管理和报告需求。基于物联网的传感器,例如能量计,水质传感器和空气污染监视器,是自动报告的重要技术构建块。例如,能量表可以跟踪和报告实时用电量,帮助公司监视和优化其能源消耗,而水质传感器则测量pH,温度和浊度等参数,以确保用水和处置符合环境标准。
摘要:近年来,由于汽车和航空航天等结构应用对减轻重量和提高性能的需求,金属的粘合剂粘合变得越来越重要。我们利用硬木生物质中的技术有机溶剂木质素和丙烯腈丁二烯共聚物橡胶 (NBR) 开发了用于粘合钢基材的可再生热塑性粘合剂。将丙烯腈摩尔比分别为 33%、41% 和 51% 的 NBR33、NBR41 和 NBR51 与木质素混合形成两相热塑性粘合剂,并测量其粘合性、粘弹性和表面特性。组合物中的木质素含量各不相同,范围从 40% 到 80% (w/w),以改变材料的韧性、刚度和表面能特性。NBR 中的腈含量越高,木质素和 NBR 相之间的相互作用或反应性越好,从而导致粘合剂的模量和刚度越大。同时,增加木质素的比例会降低韧性并提高刚度,在木质素负载率为 60% 的 NBR51 中测得的最高粘合强度为 13.1 MPa。表面能测量表明,总表面能(极性和分散表面能的总和)随木质素负载而上升,这表明表面能和基质强度对合成材料的粘合性能都起着关键作用。开发并实施了基于有限元的粘结区模型 (CZM),以研究粘合接头的破坏强度。这项研究证明了木质素作为粘合剂的宝贵组成部分的可行性,这不仅是因为其固有的化学结构和刚性,还因为其表面能特性。
在此项目中,您将与TRL软件团队合作开发最先进的模型接口和工具集,以模拟连接的车辆数据交换。将来连接的车辆将能够分享有关其位置,速度,旅程来源 /目的地和路线选择的信息。将可用的信息有可能从根本上改变当前的道路交通管制方法,您将成为实现这一未来的团队的一部分。
Logan Thrasher Collins,1,2 Wandy Beatty,3 Buhle Moyo,4 Michele Alves-Bezerra,5 Ayrea Hurley,5 William Lagor,6 Gang Bao,4 Zhi Hong Lu,2 David T. Curiel 2,* 1 圣路易斯华盛顿大学生物医学工程系;2 圣路易斯华盛顿大学放射肿瘤学系;3 圣路易斯华盛顿大学分子微生物学系;4 莱斯大学生物工程系;5 贝勒医学院分子生理学和生物物理学系;6 贝勒医学院综合生理学系,* 通讯作者。摘要:腺相关病毒 (AAV) 作为基因治疗的递送系统取得了巨大成功,但 AAV 仅有 4.7 kb 的包装容量严重限制了其应用范围。此外,通常需要高剂量的 AAV 来促进治疗效果,从而导致急性毒性问题。虽然已经开发了双重和三重 AAV 方法来缓解包装容量问题,但这些方法需要更高的剂量才能确保以足够的频率发生共感染。为了应对这些挑战,我们在此描述了一种由共价连接到多个腺相关病毒 (AAV) 衣壳的腺病毒 (Ad) 组成的新型递送系统,这是一种以较少的 AAV 总量更有效地共感染细胞的新方法。我们利用 DogTag-DogCatcher (DgT-DgC) 分子胶系统构建我们的 AdAAV,并证明这些混合病毒复合物可实现培养细胞的增强共转导。该技术最终可能会通过提供双重或三重 AAV 的替代方案来扩大 AAV 基因递送的实用性,该替代方案可以在较低剂量下使用,同时达到更高的共转导效率。简介尽管腺相关病毒 (AAV) 基因治疗已显示出巨大的前景并已导致 5 种治疗方法获得临床批准,1–3 但该载体的 DNA 包装能力较低(4.7 kb),一直阻碍着它的应用。人们付出了巨大的努力来开发双重 AAV 系统,该系统将治疗基因的两部分放在不同的衣壳中,旨在共同感染相同的细胞。4–7 类似的三重 AAV 系统也已被探索。8,9 双重和三重 AAV 系统可以通过 DNA 反式剪接、RNA 反式剪接或通过分裂内含肽的蛋白质剪接机制将其分裂的基因重新组合成完整形式。5,7 然而,双重和三重 AAV 通常需要更高的剂量才能实现有效的细胞共转导,尤其是在需要全身给药时。10 这是有道理的,因为两三个货物到达同一个细胞的可能性应该大致分别对应于单个货物到达细胞的比例的平方或立方。因此,大多数双重或三重 AAV 策略都集中于可以局部给药到目标组织的应用,例如视网膜基因治疗。5,7–9 双重和三重 AAV 的另一个缺点是,它们可能导致未接收所有货物的细胞产生部分蛋白质产物。5 由于这些部分蛋白质的翻译量通常比所需的治疗性蛋白质还要大,因此它们可能导致严重的毒性。缓解双重和三重 AAV 基因治疗相关问题的新方法将大大提高 AAV 在治疗需要递送大量转基因序列的疾病方面的适用性。为了应对这些挑战,我们在此构建了一种全新的基因递送系统“AdAAV”,它由更大的(直径约 100 纳米)Ad 衣壳组成,衣壳上装饰有
过去,要求计划及时将所有这些数据包括在内,可用的报告可能是一个具有挑战性的(甚至是不可能)的按钮。但是,技术的进步已触及。AI和机器学习可以帮助减少产生预测所需的时间并帮助提高其准确性。例如,AI可以自动化数据分析的要素,使财务专业人员能够专注于战略决策和行动,而不是运行报告。预测计划利用AI模型来生成预测,然后分析师可以根据知识和经验来添加其人类背景并调整。机器学习可以不断扫描预测异常或问题,并迅速向用户呈现其发现。这种功能越来越多地构建到计划应用程序中,因此人们可以在不中断其正常工作流程的情况下利用AI支持的分析。
在电池管理系统(BMS)中,细胞平衡在减轻电池堆栈中锂离子(Li-ion)细胞中电荷状态(SOC)的不一致方面起着至关重要的作用。如果单元格无法正确平衡,则最弱的锂离子电池将永远是限制电池组可用容量的一种。已经提出了不同的细胞平衡策略,以平衡连接串联的细胞中不均匀的细胞SOC。但是,平衡效率和缓慢的SOC融合仍然是细胞平衡方法的关键问题。为了减轻这些挑战,在本文中提出了一种混合占空比平衡(H-DCB)技术,该技术结合了占空比平衡(DCB)和细胞对包装(CTP)平衡方法。引入了H桥电路的整合,以绕过选定的细胞并增强控制和监测单个单元的监测。随后,DC – DC转换器用于在H-DCB拓扑中执行CTP平衡,从而有效地将能量从选定的单元转移到电池组中,从而减少了平衡时间。为了验证所提出的方法的有效性,在MATLAB/SIMULINK软件中设计了96个串联连接电池的电池组均匀分布在十个模块中,以用于充电和放电操作,结果表明,与传统的DCB方法相比,提出的H-DCB方法具有更快的6.0 h的速度6.0 H。此外,在放电操作过程中,在实验设置中使用了一包四个串联的锂离子细胞,用于验证所提出的H-DCB方法。硬件实验的结果表明,SOC收敛是在〜400 s处达到的。