摘要:纳米生物聚合物(如壳聚糖、明胶、透明质酸、聚谷氨酸、脂质、肽、外泌体等)输送系统有望解决将 siRNA 药物输送至实体肿瘤(包括乳腺癌细胞)时遇到的生理困难。纳米生物聚合物具有良好的刺激响应特性,因此可用于改进 siRNA 输送平台,以输送至无法用药的 MDR 转移性癌细胞。这些生物聚合物 siRNA 药物可以保护药物免受 pH 降解、细胞外运输和非靶向结合位点的影响,因此适合以控释方式进行药物内化。本综述将讨论多种生物聚合物化合物(如 siRNA 药物输送系统)在 MDR 实体肿瘤(包括乳腺癌)中的应用。
摘要:结直肠癌是全球第四大常见癌症,也是第三大常见癌症,死亡率很高。最近,靶向药物输送系统因具有治疗效果高、不良事件显著减少等优势而受到越来越多的关注。在本报告中,我们描述了生物相容性和热响应性的 FA 结合 PHEA-b-PNIPAAm 共聚物作为输送 5-FU 的纳米载体。嵌段共聚物是使用 RAFT(可逆加成-断裂链转移)聚合获得的,并通过 SEC(尺寸排阻色谱法)、NMR(核磁共振)、UV-Vis(紫外-可见光)、FT-IR(傅里叶变换红外)光谱和 TGA(热重分析)等方法进行表征。纳米粒子由含有和不含有药物 5-氟尿嘧啶的聚合物形成,这通过 DLS(动态光散射)、zeta 电位测量和 TEM(透射电子显微镜)成像进行了确认。发现聚合物的浊点接近人体温度。最终,对聚合物载体作为药物输送系统进行了测试,以确保其安全性、兼容性和结直肠癌细胞 (CRC) 的靶向性。生物学评估表明与代表性宿主细胞具有高度兼容性。此外,它表明所提出的纳米系统可能具有作为 5-FU 诱导的单核细胞减少症、心脏毒性和其他化疗相关疾病的缓解剂的治疗潜力。此外,结果显示与药物相比,对癌细胞的细胞毒性增加,包括具有耐药表型的细胞系。此外,合成载体诱导经处理的 CRC 细胞凋亡和坏死的能力已得到证实。毫无疑问,结直肠癌治疗的现状有望为未来提供解决方案,克服当前此类癌症治疗方案的常规局限性,改善患者的生活质量。
立方体的合成无功能立方体(Cub unfun ;由 GMO、尼罗河红和 F127 组成的空立方体)和空白立方体(Cub blank ;未经功能化的 PEG 化阳离子立方体,由 GMO、DSPE-PEG-Mal、DOTAP、尼罗河红和 F127 组成)的制备采用之前发表的方法并进行了一些修改 [1]。将 GMO、DSPE-PEG-Mal、DOTAP、尼罗河红、helenalin、SPION 溶解在乙醇中并充分涡旋混合(表 S1)。在 70 °C 的真空条件下在加热块中蒸发有机溶剂,然后在 N 2 气流下进一步干燥。将脂质混合物冷冻干燥过夜。然后将 2 微克/毫升 Pluronic F127(溶于 PBS)加入干脂质中,然后以 20 kHz 的频率进行超声处理,开启 5 秒,关闭 5 秒,持续 5 分钟。为了将未封装的化合物(如 helenalin 和 Nile Red)从立方相分散体中分离出来,使用 10 kDa MWCO Slide-A-Lyzer MINI 透析装置(Fisher Scientific Ltd,拉夫堡,英国)对溶液进行透析 2 小时。对于抗体结合,将 5 µg 抗 CD221 抗体与 50 ng Traut 试剂(Sigma Aldrich,吉林汉姆,英国)在磷酸盐缓冲液(0.1 M,2 mM EDTA,pH 8.0)中在室温(RT)下反应 1 小时进行硫醇化,导致 -SH 基团附着到完整的抗体上 [2]。或者,抗 CD221 抗体通过与 10 mM DTT 在室温下反应 2 小时在铰链区处被切割。反应结束后,通过 10 kDa MWCO 透析 2 小时从硫醇化抗体或半抗体中去除残留化学物质 [3]。纯化的硫醇化抗体或半抗体通过抗体的-SH 基团和立方体上的马来酰亚胺基团之间的硫醇-马来酰亚胺迈克尔反应过夜结合到 Cub 空白中,形成 Cub wh-Ab 或 Cub ha-Ab 。对于透明质酸 (HA) 结合,将不同体积的 1 mg/mL 透明质酸与 Cub 空白在室温下孵育 4 小时,产生 Cub 1-5%HA 。我们在溶剂蒸发之前将不同量的 SPION 掺入脂质混合物中,并通过超声处理生成 Cub 1-5%ION。通过将半抗体与 Cub 1%ION 结合,再与 HA 连接,合成三功能立方体 (Cub fun)。立方体中海伦那林的包封率 (EE) 是通过将载有海伦那林的立方体经 10 kDa MWCO 透析后用乙醇溶解,并通过液相色谱 (LC) 定量 NPs 中包封的海伦那林,然后将包封的海伦那林的量除以海伦那林的总量并乘以 100 来计算的。海伦那林的释放率是通过从 100 中减去 EE 来评估的。
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2022 年 10 月 13 日发布了此版本。;https://doi.org/10.1101/2022.10.10.510523 doi:bioRxiv 预印本
肺部疾病对人类健康影响巨大:许多肺部疾病目前无法治愈,需要持续治疗。由于便携式吸入器易于使用且可融入日常生活,因此成为患者的首选治疗选择。人们尝试替代排放温室气体的便携式吸入器,并因此产生了便携式水基系统,即所谓的软雾吸入器(SMI)。然而,与市场上的推进剂驱动系统相比,SMI 气雾化装置在致病安全性方面仍然存在缺点,硅占用空间较大,并且必须在洁净室环境中制造。本论文开发了三种不同类型的喷嘴,在病原体安全性、制造成本和气雾化性能方面对现有技术进行了改进。新型 3D 打印整体式涡流喷嘴首次能够在洁净室环境之外制造这种气雾化装置。该装置能够将易碎且剪切敏感的大分子药物温和地雾化。一种处理和封装硅 MEMS 的新方法使得世界上最小的便携式吸入器水基喷嘴得以展示,其硅面积仅为 1/6 平方毫米。为了改善 SMI 设备缺乏致病安全性的问题,开发了一种带阀喷嘴,可以有效地在喷嘴处密封吸入装置,防止运动肠道细菌的致病内生。这一发展可能使环保型 SMI 能够改善多种肺部疾病的治疗。
2022 年 9 月 27 日 回复请参考:FOIA #BPA-2022-01303-F 仅通过电子邮件发送至:d.gipson@lighthousefortheblind.org 达科他吉普森 西德克萨斯盲人灯塔 东 6 街 555 号 德克萨斯州圣安吉洛 76903 亲爱的吉普森女士, 博纳维尔电力管理局 (BPA) 已收到您根据《信息自由法》5 USC § 552 (FOIA) 提出的机构记录请求。该机构于 2022 年 9 月 23 日收到您的请求。BPA 已为您的请求分配了跟踪编号 BPA-2022-01303-F。请在与该机构就您的 FOIA 请求进行的任何通信中使用该跟踪编号。此通信是该机构对您的信息请求的正式确认和回复。请求“……贵机构当前所有采购卡管理人员和采购卡审批官员的名单,包含以下信息字段:名字、姓氏、电子邮件地址、电话号码、邮寄地址和职称。如果无法提供所有信息字段,请提供尽可能多的信息字段。”确认 BPA 已审查了您的请求并确定它符合 FOIA 和能源部 (DOE) FOIA 法规(联邦法规第 10 章第 1004 部分)规定的适当请求的所有标准。回复该机构的供应链战略交付和监督办公室搜索并收集了响应您请求的记录。共收集了两页。这两页随附于此通信,未进行任何删减。费用处理您的 FOIA 请求不收取任何费用。
摘要:CRISPR/Cas 系统的发现及其发展成为强大的基因组工程工具,彻底改变了分子生物学领域,并激发了人们对其治疗多种人类疾病的潜力的兴奋。作为基因治疗靶点,视网膜由于其手术可及性和由于其血视网膜屏障而具有的相对免疫优势,比其他组织具有许多优势。这些特点解释了过去十年眼部基因治疗取得的巨大进展,包括首次使用 CRISPR 基因编辑试剂的体内临床试验。尽管病毒载体介导的治疗方法取得了成功,但它们有几个缺点,包括包装限制、预先存在的抗衣壳免疫和载体诱导的免疫原性、治疗效力和持久性以及潜在的遗传毒性。纳米材料在治疗剂输送中的应用彻底改变了遗传物质输送到细胞、组织和器官的方式,并提供了一种有吸引力的替代方案来绕过病毒输送系统的局限性。在这篇综述中,我们探讨了非病毒载体作为基因治疗工具的潜在用途,探索了纳米技术在医学领域的最新进展,并重点研究了纳米粒子介导的 CRIPSR 基因货物向视网膜的递送。
自然杀伤 (NK) 细胞是先天淋巴细胞,参与针对病毒感染细胞和肿瘤的免疫反应 [1]。NK 细胞的功能可通过过继转移用于治疗,这是一种很有前途的癌症治疗选择 [2, 3]。我们对 NK 细胞如何感知周围环境、识别异常细胞和整合受体输入的理解已经取得了长足的进步 [4–6]。然而,产生和维持其功能能力的分子网络仍未完全了解,阐明 NK 细胞内在调控网络有望改善 NK 细胞治疗。通过电穿孔、脂质转染或病毒转导对 NK 细胞进行遗传操作受到传递效率不稳定和活力受损的限制(详见 [7])。已描述了使用 CRISPR/Cas9 进行 NK 细胞基因工程的效率,范围从 24% 到 90% [8–10],并且此类方法通常包括体外强力激活,从而排除了对仅在激活前表达或在激活后动态调节的基因的研究。RNA 干扰介导的基因表达敲低是一种有价值的
摘要:开发针对骨微环境的脂质纳米颗粒 (LNP) 配方对核酸治疗应用(包括骨再生、癌症和造血干细胞治疗)具有巨大潜力。然而,由于存在多种生物屏障,例如骨骼血流量低、血液-骨髓屏障以及药物与骨矿物质之间的亲和力低,导致骨微环境中的治疗剂量不利,因此向骨骼输送治疗药物仍然是一项重大挑战。在这里,我们构建了一系列对骨矿物质具有高亲和力的双膦酸盐 (BP) 脂质类材料,作为克服生物屏障的一种手段,将 mRNA 治疗药物有效地递送到体内骨微环境中。在体外筛选了配制成 LNP 的 BP 类脂质材料后,我们确定了一种领先的 BP-LNP 制剂 490BP-C14,与不含 BP 的 490-C14 LNP 相比,它在小鼠体内骨微环境中的 mRNA 表达和定位增强。此外,静脉注射后,BP-LNP 增强了 mRNA 的递送和治疗性骨形态发生蛋白 2 从骨微环境中的分泌。这些结果证明了 BP-LNP 递送到骨微环境的潜力,可能用于一系列 mRNA 治疗应用,包括再生医学、蛋白质替代和基因编辑疗法。
摘要:血脑屏障 (BBB) 维持中枢神经系统 (CNS) 的稳态并保护大脑免受循环血液中存在的有毒物质的侵害。然而,BBB 对药物的不渗透性是 CNS 药物开发的障碍,这阻碍了大多数治疗分子进入大脑。因此,科学家一直在努力开发安全有效的技术,以更高的靶向性和更低的脱靶副作用来促进药物渗透到 CNS。本综述将讨论人工纳米药物在 CNS 药物输送中的局限性以及使用天然细胞外囊泡 (EV) 作为治疗载体实现对 CNS 的靶向输送。关于使用 EV 进行 CNS 靶向药物输送的临床试验信息非常有限。因此,本综述还将简要介绍最近在外周神经系统中靶向药物输送的临床研究,以阐明 CNS 药物输送的潜在策略。已经实施了不同的前分离和后分离技术,以进一步利用和优化 EV 的天然特性。各种来源的 EV 也已应用于体外和体内中枢神经系统靶向药物输送的 EV 工程。本文将讨论这些研究在临床上的未来可行性。