摘要蘑菇体(MB)是果蝇大脑中特征良好的关联记忆结构。使用多种方法分析MB连接对于理解该结构的功能含义至关重要。使用遗传行进透射式示踪工具Trans-tango,我们确定了MB输出神经元(MBONS)的大脑的不同投射和收敛的下游靶标。我们的分析揭示了至少三个单独的目标,这些目标是从MBON接收收敛输入的:其他MBON,扇形主体(FSB)和侧配附件叶(LAL)。我们在解剖学和功能上描述了一种多层电路,其中抑制性和兴奋性MBON会在FSB和LAL神经元的相同遗传子集上收敛。此电路体系结构使大脑能够在执行适当的行为响应之前更新和集成到以前的经验。我们对Trans -Tango的使用提供了一个可遗传访问的解剖框架,用于研究这些复杂和相互联系的电路中组件的功能相关性。
基于具有可见的红外光子对源的非线性干涉仪,利用成对生成过程的量子干扰,红外量子光谱仪,可以通过可见的光子检测来提取样品的红外光学特性,而无需用于基础光学源或检测器。我们为量子傅立叶转换红外(QFTIR)光谱制定了理论框架。所提出的傅立叶分析方法完全利用了干涉图中的相位信息,使我们能够在简单设置中确定复杂的透射率和光学常数,而无需用于光谱选择的任何色散光学器件。在实验演示中,使用低增益状态下操作的QFTIR在近红外区域测量了带通滤波器和硅胶折射率的透射光谱;这些结果与使用常规光谱仪和从参考文献估算的值非常吻合。这些示范证明了QFTIR光谱的有效性和巨大潜力。
探索原子量表的材料的结构和物理性质之间的相应关系仍然是科学中的基本问题。随着异常校正的透射电子显微镜(AC-TEM)的发展和超快光谱技术,亚角尺度空间分辨率和飞秒尺度的时间分辨率,可以通过措施来获得。但是,结合两种优势的尝试仍然是一个巨大的挑战。在这里,我们通过使用自设计和制造的TEM标本持有人来开发AC-TEM中高时间分辨率的原位光谱法,该标本持有人具有亚角尺度空间分辨率和femtosecondscale尺度的时间分辨率。我们设备的键和独特的设计是使用纤维束,它可以将聚焦的脉冲梁传递到TEM中,并同时收集光学响应。生成的聚焦点的尺寸小于2μm,并且可以在面积大于75×75μm2的平面中进行扫描。最重要的是,由玻璃纤维引起的阳性组速度分散由一对衍射光栅补偿,从而导致脉冲梁在TEM中的脉冲宽度约为300 fs(@ 3 MW)。现场实验,观察AC-TEM中CDSE/ZnS量子点的原子结构,并在此期间获得光致发光寿命(〜4.3 ns)。可以通过利用该设备在TEM中执行进一步的超快光谱法。
硅纳米结构已在现代微电子学中广泛使用。微电芯片中不断增加的整合密度不可避免地导致Si纳米结构的明显温度升高,这是承受大量热应力所必需的,以维持其适当的功能。si纳米结构也是许多新型纳米技术应用的基础,包括能量收集和存储,灵活且可拉伸的电子设备,传感器和纳米机械系统。[1]这些应用的可靠性问题要求对升高温度下的Si纳米结构的机械行为有基本的了解。在这里,我们报告了在RT至600 K的温度范围内单晶Si NWS的原位拉伸测试。[2]我们采用新开发的微电力系统(MEMS)[3-6]来进行透射电子显微镜(TEM)内的纳米热测试。该平台允许在不同温度下同时对原子尺度变形的TEM成像进行应力 - 应变测量。[2,7]基于MEMS的平台内置了一个片上加热器,从而使样品的受控加热。
(! div>“#$%$&'#() *) *,“ $ 0 $ 7&) + 2- $ 0- $ 1913:; 5 %% 5&%,4/13#) div>
nist.gov › 文档 PDF 量子计量学部,国家物理实验室,特丁顿,米德尔塞克斯 TWII OLW,英国。光学测量部,国家办公室...
NPL 报告 QM 122 1996 年 6 月中期报告 SM&T 框架 III 项目 3032 - 玻璃组件热透射校准面板 Ray Williams 量子计量中心国家物理实验室 Teddington,米德尔塞克斯,英国 TW11 0LW 摘要 本报告描述了上述 SM&T 项目第 1 阶段开展的工作。它描述了对选定为校准板核心的发泡聚苯乙烯材料进行的热导率测量的结果。它给出了这些测量的有限比对结果,并讨论了该比对练习提出的一些问题。给出了玻璃校准板的规格和要使用的制造程序。最后,给出了项目第二阶段的拟议时间表。1996 年 6 月