该方法首先通过广泛的计算机模拟来确定特定问题。“为了确保计算机模拟的准确性,”Marzougui 指出,“我们将其结果与可用的碰撞测试进行比较。我们使用尽可能多的测试。一旦我们确定了问题,我们就会选择一两个关键案例并运行碰撞测试。使用高速数码相机和加速度计、陀螺仪和其他传感器对测试进行充分记录,这些传感器可获取车辆响应并测量其速度。”他继续说道,“假设我们发现了某种路边几何形状对于某个护栏至关重要。我们进行计算机分析和测试,并为联邦公路管理局制定改造和建议或指南。可以实施这些指南以提高护栏的安全性并降低受伤和死亡的风险。”
占用和运动探测器:超声波、微波运动、电容式占用、可见光和近红外光、远红外运动、PIR 运动、位置、位移和水平传感器:电位式、重力式、电容式、电感和磁式、光学、超声波、雷达位置、位移和水平传感器:电位式、重力式、电容式、电感和磁式、光学、超声波、雷达。速度和加速度传感器:电容式加速度计、压阻式加速度计、压电式加速度计、热加速度计、加热板加速度计、加热气体加速度计、陀螺仪、压电电缆 气体传感器:二氧化碳、一氧化碳、NOX、SOX、PM2.5、PM10、挥发性有机化合物 应用:制造业、机器人领域的案例研究
摘要流量参数的准确测量通常取决于传感器的可访问性。光流评估技术,例如粒子图像速率(PIV)和粒子跟踪速度计(PTV),仅限于光学上透明的介质。但是,许多工业过程都涉及不透明的媒体,需要采用替代方法。本研究介绍了X射线粒子跟踪速度法(XPTV)的开发和应用,以研究此类介质中的流量。具体来说,检查了融合细丝制造(FFF)打印机的喷嘴内的流量。这项工作的新贡献是使用XPTV对加热流进行的首次分析,通过在聚合物流中引入钨粉作为对比剂来实现。该研究成功地可视化了抛物线速度曲线,证明了该方法的功效。
本文讨论了冗余惯性测量单元在机载摄影测量和遥感 (APRS) 中的可能应用和优势。随着惯性导航系统 (INS) 技术与全球定位系统 (GPS) 技术的结合在 APRS 社区中获得认可,并且随着理论和有关其实际使用的问题得到更好的理解,人们可以开始以更广阔的视角看待该技术及其背景。本文介绍了将大地测量/摄影测量方法应用于确定 INS/GPS 轨迹的可行性的初步研究;即使用冗余传感器(四对或更多对陀螺仪和加速度计)的可能优势。为此,进行了一次模拟具有两个惯性测量单元的冗余配置的试飞。本文除了介绍多个惯性传感器组合的理论外,还描述了飞行过程并对两组数据进行了初步的比较分析。
Beaver 中包含的 KAP 140 自动驾驶仪系统是一种基于速率的数字自动驾驶仪系统,可提供平稳的性能和仅在更昂贵的自动驾驶仪中发现的增强功能。该系统是霍尼韦尔开发的首款此类系统,将数字技术和可靠性带入轻型飞机驾驶舱。KAP 140 滚转轴功能包括机翼调平器、航向选择和 VOR/LOC 拦截和跟踪。KAP 140 还可以耦合到 GPS 和 RNAV 接收器。滚转速率信息来自转弯协调器。俯仰轴功能包括垂直速度、下滑道和高度保持以及高度预选选项。俯仰信息来自压力传感器和加速度计。KAP 140 自动驾驶系统独立于飞机的人工地平线运行。因此,如果真空系统发生故障,自动驾驶仪将保留侧倾稳定性和所有垂直模式。Beaver 版本中的 KAP 140 功能
该项目于 2013 年 12 月正式启动。从那时起,合作伙伴已经开发了 (a) 监测系统的第一个原型,该系统由本地定位标签组成,用于在灾难发生前后确定结构系统中选定点的位置,从而确定灾难发生后的结构,连接到地面柱上的应变传感器用于确定负载分布和加速度计用于评估振动下的结构状况,例如在地震载荷的情况下,(b) 用于评估结构和非结构元素状态的方法和编码以及 (c) 用于多视角倾斜机载图像的损坏方法。此外,合作伙伴已成功对两个不同复杂程度的结构进行了两组独立的组件测试,主要用于支持 2016 年 8 月大型 RECONASS 试点的设计,其中展示了整个集成系统。
2.1a 舰桥布局 2.1b 驾驶室控制台布局 2.2.2a 雷达和 ECDIS 设备 2.2.2b 雷达操作台 2.2.2c 雷达显示器 2.2.3a ECDIS 操作台 2.2.3b ECDIS 显示器 2.3.1a 操舵台外围设备 2.3.2a 电罗经系统 2.3.2b 电罗经监视器 2.3.2c 电罗经子菜单 2.3.3a 自动驾驶仪控制面板 2.3.6a 舵角指示器 2.4.1a 主机舰桥控制装置 2.4.3a 推进器控制系统 2.4.3b 推进器控制面板 2.5.1a 速度计系统 2.5.2a Loran C 2.5.3a DGPS 导航仪 2.5.4a 风速计2.5.5a 气象传真接收器 2.5.6a 回声测深仪系统 2.5.6b 回声测深仪前面板 2.5.7a 值班呼叫面板 2.5.8a 自动识别系统 2.5.9a 航行事件记录系统 2.5.10a 主时钟控制面板 2.6.1a GMDSS 2.6.1b GMDSS 遇险反应 2.6.1c GMDSS 设备
在这个项目中,我们使用头部运动为瘫痪者设计了智能轮椅。该项目的主要目的是创建一个基于头部运动和距离以检测障碍物或物体的距离的用户友好的轮椅(对于身体上挑战的人)。该项目由超声波传感器和加速度计组成。超声波传感器用于查找轮椅与相反障碍物之间的距离。轮椅的运动是使用身体挑战的人的头部运动来编程的。在该运动期间,超声波传感器将计算距离,当轮椅靠近任何其他物体时,轮椅警报将被激活,并且会停止。这是在左右移动中控制轮椅的有效方法,并且可以通过用户轻松控制头部运动,它将自动阻止轮椅更靠近任何障碍物。在这种方法中,控制轮椅很容易由身体挑战的人处理。
摘要:移动机器人技术是机器人技术的一个分支,在该分支中,自平衡机器人类别尤其令人感兴趣,因为这些机器人有望像人类一样在困难的地形上行走,并可用作研究自主控制系统的平台。本文旨在总结两轮自平衡机器人的发展,并以此作为案例研究,展示计算机控制系统在物理系统中的应用。互补滤波器与三轴陀螺仪和加速度计一起使用,以精确测量两轮机器人的旋转,并将数据提供给比例-积分-微分 (PID) 程序,该程序相应地控制电机的功率,以控制其倾斜并实现自平衡。简而言之,机器人设法在小倾斜角度范围内实现自平衡,但是,设计缺陷(例如传感器在较大倾斜角度下脱落)会导致较大倾斜角度下的不稳定。在未来的工作中,可以采用更复杂的控制算法,并可以彻底探索不同机器人构造的影响。
摘要:在现代反潜战中,有各种方法可以在二维空间中定位潜艇。为了更有效地跟踪和攻击潜艇,目标的深度是一个关键因素。然而,到目前为止,找出潜艇的深度一直很困难。本文提出了一种利用 DIFAR(定向频率分析和记录)声纳浮标信息(例如在 CPA(最近接近点)时或之前的接触方位和目标的多普勒信号)估计潜艇深度的可能解决方案。通过将勾股定理应用于目标和 DIFAR 声纳浮标水听器之间的斜距和水平距离来确定目标的相对深度。斜距是使用多普勒频移和目标的速度计算出来的。水平距离可以通过对两个连续的接触方位和目标的行进距离应用简单的三角函数来获得。仿真结果表明,该算法受仰角影响,仰角由声纳浮标与目标之间的相对深度和水平距离决定,精确测量多普勒频移至关重要。关键词:深度估计,DIFAR(定向频率分析和记录)声纳浮标,水下目标,多普勒效应