距离 d = 3、7 量子比特颜色代码(如图 1 所示)相当于 Steane 代码,它将一个逻辑量子比特编码为七个物理量子比特 1。量子比特由顶点处的点表示,逻辑算子 XL 和 ZL 可以横向选择,即与物理 X 和 Z 一起作用于所有 7 个量子比特。稳定器检查算子可以检测相位和位翻转错误,对应于 4 量子比特 X 或 Z 型算子 S ( i ) x 和 S ( i ) x ,每个算子作用于属于 3 个斑块的 4 个物理量子比特。该代码可以纠正七个物理数据量子比特中任意一个的最多一个故障。在本练习中,我们将研究量子纠错的工作原理,以及如何在该代码中实现逻辑门。
摘要:我们将介绍经典的确定性计算,作为以位的形式存储的处理信息,并以逻辑门为基础。使用此模型,我们将描述如何在计算机上执行简单任务。我们将在我们的电路中介绍元素,其动作是随机的,并通过指定概率进行建模,并使用线性代数符号和术语来研究所得的随机计算模型,类似于量子计算中使用的模型。我们将研究量子计算的电路框架,并注意与经典随机计算相似的地方和根本不同。我们将通过描述量子算法,游戏和协议的表现,这些量子计算的力量似乎超出了其经典对应物。我们不会期望事先熟悉量子物理学或计算机科学。我们的讨论将为对代数的任何人以及在第一年本科课程级别上的概率访问。
量子误差校正需要测量误差综合症才能正确定位和识别错误。在这里,我们比较了[[7,1,3]]量子误差校正代码的三种综合征测量策略:近似状态,Steane状态和一个Ancilla Qubit。这些策略中的第一个是容错的,而第三个策略则不容忍。对于每种策略,我们比较以不同的间隔应用量子误差校正的50个逻辑门的规定。然后,我们比较了不同的综合征测量策略的规定。我们的模拟表明,最佳综合征测量策略取决于错误环境的细节。模拟允许量子计算机程序员在特定错误环境中权衡计算准确性与资源消耗。此外,我们表明,从量子容错的角度进行不必要的综合征测量可能有助于实现更好的准确性或降低资源消耗。最后,我们的模拟表明,非故障综合征测量策略与容错的结果可相当的精度结果。
由于纠错会产生大量开销,大规模量子计算将需要大量量子比特。我们提出了一种基于量子低密度奇偶校验 (LDPC) 码的低开销容错量子计算方案,其中长距离相互作用使得许多逻辑量子比特能够用少量物理量子比特进行编码。在我们的方法中,逻辑门通过逻辑 Pauli 测量进行操作,既能保护 LDPC 码,又能降低所需额外量子比特数的开销。与具有相同代码距离的表面码相比,我们估计使用此方法处理大约 100 个逻辑量子比特的开销将有数量级的改善。鉴于 LDPC 码所展示的高阈值,我们的估计表明,这种规模的容错量子计算可能只需几千个物理量子比特就能实现,错误率与当前方法所需的错误率相当。
9 美国佛罗里达州奥兰多市中佛罗里达大学物理系 32816 摘要 量子信息科学 (QIS) 的应用通常依赖于量子比特的生成和操纵。尽管如此,仍有一些方法可以设想一种具有连续读出但没有纠缠态的设备。这个简明的观点包括对量子比特的替代方案的讨论,即固态版本的马赫-曾德尔干涉仪,其中局部矩和自旋极化取代了光极化。在此背景下,我们对决定涉及具有大磁各向异性的分子系统的量子信息过程的基本工作原理的数学原理提供了一些见解。基于此类系统的晶体管使得制造不需要纠缠态的逻辑门成为可能。此外,存在一些值得考虑的新方法来解决与量子设备的可扩展性有关的问题,但面临着寻找适合所需功能的材料的挑战,这些材料类似于 QIS 设备所寻求的功能。
大规模数据存储的爆炸性增长和对超快数据处理的需求需要具有出色性能的创新记忆设备。2D材料及其带有原子尖锐界面的范德华异质结构对内存设备的创新有着巨大的希望。在这里,这项工作呈现出所有由2D材料制成的功能层,可实现超快编程/擦除速度(20 ns),高消光率(最高10 8)和多位存储能力。这些设备还表现出长期的数据保留超过10年,这是由高栅极偶联比(GCR)和功能层之间的原子尖锐接口促进的。此外,这项工作证明了通过协同电气和光学操作在单个设备单元上实现“或”逻辑门的实现。目前的结果为下一代超速,超级寿命,非挥发性存储器设备提供了坚实的基础,并具有扩展制造和灵活的电子应用程序的扩展。
摘要。机器学习现在几乎到处都广泛使用,主要用于预测。从最广泛的意义上讲,机器学习目标可以总结为一个近似问题,并且可以减少各种培训方法解决的问题,以找到未知功能的最佳值或恢复功能。目前,当使用量子门而不是普通的逻辑门时,我们只有基于经典量子逻辑的量子计算机的实验样本,并且使用概率量子位而不是确定性位。也就是说,从大量可能的量子计算机可以实现“量子至上”的可能性(在解决这项任务所需的时间内)的概率性质问题,这些问题可以从一系列可能的量子计算机上确定一定的最佳状态。这项工作的主要思想是确定在量子计算机上解决机器学习问题时至少实现量子优势的可能性,至少是量子优势。
摘要 - 基于域墙(DW)运动的旋转逻辑设备提供了灵活的体系结构,以存储和携带逻辑信息在电路中。在此设备概念中,信息以多个磁性隧道连接(MTJ)共享的磁道磁态进行编码,并通过DW运动处理。在这里,我们证明可以使用新型的MTJ堆栈来实现这种基于纳米级DW的逻辑设备的全电动控制。除了各向同性的场驱动运动外,我们还显示了由电流驱动的DWS的方向运动,这是逻辑操作的关键要求。使用DW运动对逻辑门的完整电气控制。我们的设备在全晶片的IMEC的300毫米CMOS Fab中制造,这清除了大规模集成的路径。因此,此概念证明为逻辑和神经形态应用提供了高性能和低功率DW设备的潜在解决方案。
自20世纪40年代问世以来,晶体管就不断改变着我们的生活。作为逻辑门和集成电路(芯片)的核心元件,晶体管无疑在推动计算机、智能手机、平板显示器、物联网乃至所有电子或电气系统的发展方面发挥着无与伦比的作用。过去几十年来,主流晶体管通常由硅材料和金属氧化物等无机半导体制成,有利于实现高迁移率、快速开关速度和优异的稳定性。因此,硅晶体管和金属氧化物半导体场效应晶体管被广泛应用于电子应用。然而,尽管这些晶体管的制造规模要小得多以满足摩尔定律的预测,但它们却非常坚硬,并且几乎接近速度和功耗的基本极限。由于未来对具有机械灵活性/坚固性和低功耗的晶体管的需求,功能材料、设备配置和集成处理技术的创新以促进从刚性设备到柔软、耐用和生物相容性的设备的演变势在必行。1