摘要。现有的联合学习方法在涉及数据隐私和非IID数据的情况下有效地处理了分散的学习。但是,在现实情况下,每个客户端都动态学习新类,要求全局模型对所有可见的类进行分类。有效地减轻灾难性遗忘和数据异质性,我们提出了一种名为Pilora的简单有效方法。一方面,我们采用原型学习来学习更好的功能表示形式,并利用原型和类特征之间的启发式信息来设计原型重新重量调节,以解决由数据异质性引起的分类器偏见而无需重新培训分类器。另一方面,我们将增量学习视为学习独特的任务向量并在不同的Lora参数中编码它们的过程。因此,我们提出了增量的洛拉(Lora)来减轻灾难性遗忘。标准数据集的实验结果表明,我们的方法的表现优于最先进的方法。更重要的是,我们的方法在不同的环境和数据杂基的程度上表现出强大的稳固性和优越性。该代码可从https://github.com/ghy0501/pilora获得。
战略规划中经常被遗忘的一个部分是评估。然而,评估却是最关键的要素之一,因为它突出了哪些工作做得好、哪些需要改进以及下次可以做哪些不同的事情。当你下次重复一项任务时,这是一种节省宝贵资源(金钱和时间)的方法。在可能的情况下,应该使用可以衡量的指标来评估你的表现。例如,参加筹款活动。
•具有语义安全性的公共钥匙加密•具有存在性不可原谅的安全性的公共键签名•带有模拟安全性的遗忘转移和MPC(无量子通信/长期量子内存)•P = NP量子敏感或不敏感,没有黑盒攻击“ P = np g = np g = np g = np gastum-natum cantum countum cancous”
在公共平台上使用敏感/受限数据(机密,例如员工和患者个人信息、电子健康信息)会导致安全或隐私风险增加(例如数据泄露、不当访问、通知、透明度、被遗忘权)或监管不合规。生成式人工智能会放大这种风险,因为用户将有权在公共工具上共享信息,如果没有适当的控制,机密信息可能会暴露。
多任务学习假设能够从多个任务中学习的模型可以通过知识迁移实现更好的质量和效率,这是人类学习的一个关键特征。然而,最先进的 ML 模型依赖于每个任务的高度定制,并利用大小和数据规模而不是扩展任务数量。此外,持续学习将时间方面添加到多任务中,通常专注于研究常见的陷阱,例如灾难性遗忘,而不是将其作为构建下一代人工智能的关键组成部分进行大规模研究。我们提出了一种能够生成支持动态添加新任务的大规模多任务模型的进化方法。生成的多任务模型是稀疏激活的,并集成了基于任务的路由,可保证在模型扩展时计算成本有限并且每个任务添加的参数更少。所提出的方法依赖于知识分区技术来实现对灾难性遗忘和其他常见陷阱(如梯度干扰和负迁移)的免疫。我们通过实验证明,所提出的方法可以联合解决 69 个公共图像分类任务并取得有竞争力的结果,例如,与在公共数据上训练的最佳模型相比,通过实现 15% 的相对误差减少,提高了 cifar10 等竞争基准的最新水平。
随着变压器和视觉模型(VLM)的出现,例如剪辑,微调大型预培训模型最近已成为持续学习的普遍策略。这导致发展了许多促使策略以适应基于变形金刚的模型而不会引起灾难性遗忘。但是,这些策略通常会损害预先训练的剪辑模型的原始零射击功能,并难以适应明显偏离预训练数据的域。在这项工作中,我们提出了持续的生成培训,以进行增量及时学习,这是一种简单而新颖的方法,可以减轻遗忘,同时调整剪辑。简而言之,我们采用各种自动编码器(VAE)来学习视觉编码器嵌入空间内的类调节分布。然后,我们利用这些分布来采样新的合成视觉嵌入式,并在随后的任务中训练相应的特定类文本提示。通过对不同领域的广泛实验,我们表明,这种生成的重播方法可以适应新任务,同时改善零射击功能,并使用针对CL方案量身定制的新型度量标准进行了评估。值得注意的是,进一步的分析表明,我们的方法可以通过关节及时调整弥合差距。该代码库可从https://github.com/ aimagelab/mammoth获得。
2020)设置。但是,大多数现有的解决方案都是根据对手遗忘的关键假设建立的,这意味着损失功能的变化不取决于代理的历史轨迹。这个关键的假设限制了无重组算法对许多RL字段的适用性,尤其是多代理增强学习(MARL)(Yang and Wang,2020)。在一个多代理系统中,由于所有代理人都在同时学习,因此一个代理商对其策略的改编将使环境从其他代理商的角度来看。因此,要找到每个玩家的最佳策略,必须考虑他人的战略反应,而不是纯粹是遗忘的。因此,研究非固定算法针对非合理的对手是将现有在线学习技术调整为MARL设置的关键步骤。在线学习中的另一个挑战是系统中的非连面动态。当代理应用无需重格算法(例如乘法更新)(MWU)(Freund and Schapire,1999)或关注正规领导者(FTRL)(Shalev-Shwartz等人),2011年)要互相对抗,该系统展示了庞加莱经常性的行为(Mertikopoulos等人。,2018年),这意味着永远无法实现最后一轮融合(Bailey and Piliouras,2018)。最近的作品(Dinh等人,2021a; Daskalakis和Panageas,
随着变压器和视觉模型(VLM)的出现,例如剪辑,微调大型预培训模型最近已成为持续学习的普遍策略。这导致发展了许多促使策略以适应基于变形金刚的模型而不会引起灾难性遗忘。但是,这些策略通常会损害预先训练的剪辑模型的原始零射击功能,并难以适应明显偏离预训练数据的域。在这项工作中,我们提出了持续的生成培训,以进行增量及时学习,这是一种简单而新颖的方法,可以减轻遗忘,同时调整剪辑。简而言之,我们采用各种自动编码器(VAE)来学习视觉编码器嵌入空间内的类调节分布。然后,我们利用这些分布来采样新的合成视觉嵌入式,并在随后的任务中训练相应的特定类文本提示。通过对不同领域的广泛实验,我们表明,这种生成的重播方法可以适应新任务,同时改善了零发功能,并使用针对CL方案量身定制的新型度量标准进行了评估。值得注意的是,进一步的分析表明,我们的方法可以通过关节及时调整弥合差距。该代码库可从https://github.com/ aimagelab/mammoth获得。
A.学生必须携带带照片的身份证件。学生应穿着舒适且不介意弄脏的衣服。确保他们携带护目镜(太阳镜或护目镜)、在营地期间需要服用的任何处方药(EpiPens、吸入器)、防晒霜、驱虫剂、可再灌装的水瓶、毛巾、小袋子来装物品。这些物品也将在营地提供,供可能无法购买的学生或任何物品被遗忘在家中的学生使用。
作为制定这一战略计划过程的一部分,董事会审查了组织的使命和精神,比较了我们目前如何实现这些声明,并调整计划以更好地实现这些声明。在整个审查过程中,董事会一致认为使命和精神中最重要的部分是“公平和平等的条件”。这常常被人们遗忘,而人们更青睐“更多的比赛”。在所有 WCA 比赛中保持公平和平等的条件对于 WCA 继续为社区提供服务至关重要。