当微镜在“开”和“关”位置之间切换时,它们会通过静电力固定到位。确实,在早期的 DMD 原型开发过程中,一些镜子由于较大的(亚微米技术术语)粘合力而倾向于粘附在下面的表面上。这反过来又导致镜子无法切换。造成这种粘合力的原因是什么?有两种现象在起作用。第一种现象是相对简单的,毛细水凝结会导致着陆尖端和着陆表面“卡住”。
孟买,2023 年 10 月 6 日:L&T 输配电业务的数字能源解决方案部门已显著扩大其在印度、中东和北美的业务。在印度,该业务正在执行一项重要订单,以升级国家和地区输电资产管理中心的 SCADA 和相关系统。印度输电资产管理中心控制着世界上最大的变电站和输电线网络之一,对该国超过 270 个超高压变电站的庞大电网进行复杂的监控和控制。通过实时监控系统参数和资产可视化,可以实现早期发现异常、更快干预、有效协调、高级分析和高效运营等多个目标。这项关键任务升级将涉及现有系统的并行运行,部署升级的系统,例如传输远程访问系统 (TRAS)、自动故障分析系统 (AFAS) 和输电资产网络安全解决方案 (PTACS)。最近几个月,该业务已获得在马哈拉施特拉邦和古吉拉特邦实施高级配电管理系统的订单。在北美,该公司参与实施了一系列清洁能源整合、公用事业运营和电网研究项目。该公司正在为加州的一家清洁能源生产商实施一个项目,为能源资产提供“平衡机构”(BA) 控制服务。范围包括 NERC 标准下的“提前”、“实时”和“事后”BA 监控和合规服务,包括加州电力 ISO 市场接口系统。该项目将由位于美国加州费尔菲尔德的 HENOC(混合能源网络运营中心)设施交付。参与该项目的设施和人员均由美国 NERC(北美电力可靠性委员会)认证。基于先进的能源电网模拟和建模能力,该公司正在与加州能源委员会 (CEC) 和美国能源部 (DoE) 签订合同,为合作伙伴开展多个研发和示范资助项目。
海马体是一种皮层结构,由具有独特回路的子区组成。了解其微观结构(以这些子区为代表)可以提高我们对学习和记忆的机制理解,并且对多种神经系统疾病具有临床潜力。一个突出的问题是如何在两个形态截然不同的海马体之间划分、注册或检索同源点。在这里,我们提出了一种基于表面的配准方法,该方法以对比度无关、拓扑保持的方式解决了这个问题。具体而言,首先对整个海马体进行分析展开,然后根据厚度、曲率和脑回在 2D 展开空间中注册样本。我们在七个 3D 组织学样本中演示了这种方法,并且与更传统的配准方法相比,使用此方法对子区进行了更出色的对齐。
钒氧化还原液流电池 (VRFB) 电解质在高温 (> 40°C) 下热稳定性不足仍然是该技术开发和商业化的挑战,否则该技术将为间歇性可再生能源的长期储存带来广泛的技术优势。本文提出了一种组合添加剂的新概念,它显著提高了电池的热稳定性,使其能够在迄今为止测试的最高温度 (50°C) 下安全运行。这是通过结合两种化学性质不同的添加剂——无机磷酸铵和聚乙烯吡咯烷酮 (PVP) 表面活性剂实现的,它们共同减缓溶液中氧钒物质的质子化和聚集,从而显着抑制有害沉淀物的形成。具体来说,在 50°C 的静态条件下,沉淀率降低了近 75%。这一改进反映在完整的 VRFB 设备在 50°C 下连续运行超过 300 小时的稳健运行中,在 100 mA cm-2 电流密度下实现了令人印象深刻的 83% 的电压效率,并且在电极/流动框架或电解质槽中均未检测到沉淀。
摘要:本研究旨在解决有源配电网(ADN)不稳定能源接入问题,包括频率调节困难、ADN 电压偏差增大、运行安全性和稳定性下降等。本研究建立了一个两阶段主要化配置模型来识别和理解波动性能源如何影响混合储能系统(HESS)。利用风能、太阳能和负荷的日预报数据来检查带有铅酸电池和超级电容器(SC)的 ADN 和 HESS。在这个规划阶段,综合成本、网络损耗和节点电压偏差被视为多目标优化模型中的最优目标,而改进的多目标优化粒子群方法用于求解容量配置的初始值。在运行阶段,以风电输出功率波动、HESS频率偏差等优化目标求解SC配置能力修正值,并利用加入混沌机制的量子粒子群算法对ADN中不同类型机组的输出进行进一步优化,基于案例33个节点实例进行仿真研究,确定最佳配置结果,仿真结果验证了模型的可行性。
杂种优势描述的是杂交植株相对于其亲本的产量和稳健性增加,是现代作物育种的基石 1 。除双亲杂种优势外,在玉米、马铃薯和苜蓿中还观察到同源多倍体渐进杂种优势 (APH),当来自四个不同祖父母的基因组片段组合时,会产生额外的杂种优势效应 2 。APH 尚未在商业育种中得到充分利用,因为减数分裂会重新分配基因型,并且无法生产受益于 APH 的基因一致的种子。先前在拟南芥和水稻中建立的“有丝分裂而非减数分裂”(MiMe) 系统可产生克隆的、未减数的配子 3 – 7 ,但尚未在双子叶作物中建立或在设计多倍体基因组工程中进行测试。在这里,我们建立了番茄多倍体基因组设计,通过两个不同杂交亲本产生的克隆配子的杂交,实现了四种预定义基因组单倍型的可控组合。我们着手在番茄中建立 MiMe 系统,以可控的方式产生克隆配子。基于对番茄减数分裂突变体的基本了解(补充说明 1),我们发现可以通过 SlSPO11-1、SlREC8 和 SlTAM 的突变在自交系番茄中建立功能性 MiMe 系统(图 1a-c、扩展数据图 1 和 2、补充图 1-16 和补充表 1-4)。我们在三种杂交番茄基因型中实施了 MiMe 系统,包括 Moneyberg-TMV ⨯ Micro-Tom (MbTMV-MT) 模型杂交品种、枣番茄商业杂交品种‘Funtelle’和串番茄商业杂交品种‘Maxeza’(图 1a-c)。我们鉴定出两个独立的 MbTMV-MT、三个独立的 Funtelle 和三个独立的 Maxeza 品系,它们在 SlSPO11-1、SlREC8 和
电线粘结仍然是微电子包装中的主要互连技术。在过去的三年中,显而易见的是,从AU和Cu线粘合到Cu键合的显着趋势变得显而易见。这是由于一般努力降低诸如AU之类的原材料的制造成本和价格上涨所致。尽管在最近几十年中已经进行了许多研究,但大多数都集中在Au Ball/楔形上。这项研究的结果表明,键合参数,键合质量和可靠性密切相互联系。然而,与AU相比,Cu的不同材料特性(例如对氧化和硬度的依从性)意味着这些见解不能直接传递到Cu键合过程中。因此,有必要进一步研究。本文讨论了在各种键合参数下的键合界面形成的研究。Cu线在AlsICU0.5金属化上键合,并进行了键合参数优化以识别有用的参数组合。根据这种优化,使用低,中和高的美国功率和粘合力的参数组合组装不同的样品。通过剪切测试和HNO 3蚀刻进行了界面分析。在200 c退火168 h和1000 h的设备的横截面上分析了金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。 粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。使用EDX分析退火样品的金属间相形成,并根据相形成动力学进行解释。确定了三个主要的金属间相。2010 Elsevier Ltd.保留所有权利。
摘要:对直径25 μ m的Ag-2.35Au-0.7Pd-0.2Pt-0.1Cu合金丝在不同工艺参数下进行了键合性能试验。利用扫描电子显微镜(SEM)研究了电击发(EFO)电流和EFO时间对无空气球(FAB)变形能力的影响,以及超声功率和键合力对键合特性的影响。实验结果表明:随着EFO电流和EFO时间的增加,FAB从预热尖端生长为小球、规则球,最后生长为高尔夫球,在25 mA和650 μ s时FAB呈现最佳形状。当EFO电流为25 mA时,FAB直径与EFO时间呈非线性关系,可用三次方程表示。进一步研究发现,在键合力一定的情况下,随着超声功率的增加,捣碎的球直径越来越大,毛细孔印迹越来越明显,尾部宽度也随之增大,反之亦然。球键合的最佳超声功率为70 mW,键合力为45 gf;楔键合的最佳超声功率为90 mW,键合力为75 gf。最后,在最佳工艺参数下制备的键合线样品,在破坏性拉力测试后均未发生球键合和楔键合剥离现象,在球剪切测试后键合焊盘上金属间化合物完全覆盖,形貌完好,键合线样品具有较高的键合强度,从而提高了微电子产品的可靠性。该研究为含Pt银基键合合金线的可靠性研究提供了技术支持。
摘要超导涡旋的动力学是由非线性部分微分方程描述的复杂现象。现代方法已启用了有趣的几何形状中模拟涡流动力学。本文包括用于分析超导涡流(例如通量量化和固定)不同现象的基本方法论的描述。该项目的目标是模拟3D中的涡流动力学,以估计不同超导零件中涡旋强度的耦合强度。这些耦合力可能会影响超导MEMS共振器的行为。本文中给出的估计值表明,两个板之间的涡流耦合力将足够重要,足以可测量。为了将本文中的方法与测量的材料参数相结合。