含 Src 同源性-2 的蛋白酪氨酸磷酸酶 2 (SHP2) 是一种由 PTPN11 基因编码的广泛表达的非受体蛋白酪氨酸磷酸酶 [3]。SHP2 是一种经过广泛研究的致癌酪氨酸磷酸酶,与各种信号转导通路相关,包括激活 RAS/MAPK、PI3K/AKT、JAK/STAT、PD-1/PD-L1、mTOR 和 Hippo 通路 [4–7]。PTPN11 基因的种系突变可导致努南综合征 (NS),这是一种以身体部位发育不全为特征的常染色体显性遗传病,以及伴有多发性雀斑的努南综合征 (NS-ML) [8,9]。此外,PTPN11 基因的体细胞获得功能 (GOF) 突变会导致多种血液系统恶性肿瘤,如幼年型粒单核细胞白血病 (JMML)、急性髓系白血病 (AML)、B 细胞急性淋巴细胞白血病 (B-ALL)、骨髓增生异常综合征 (MDS) 和多种实体癌 [7,10]。重要的是,患有基于 NS 的激活性 PTPN11 突变的婴儿可能会患上 JMML 或 JMML 样骨髓增生性疾病 (MPD) [11]。最近在横纹肌样肿瘤细胞系中进行的全基因组 CRISPR(成簇的规律间隔的短回文重复序列)和小分子筛选揭示了 SHP2 和受体酪氨酸激酶 (RTK) 之间存在治疗相关的依赖性 [12]。几种 SHP2 特异性抑制剂正在接受测试,以确定其作为抗癌药物的治疗潜力。在这篇综述中,我们重点关注 SHP2 的功能、其突变对各种信号通路的多样化影响以及 PTPN11 突变在血液系统恶性肿瘤治疗管理中的意义。
酪氨酸磷酸化是一种重要的翻译后修饰,可调节多细胞生物中许多生化信号网络的作品。迄今为止,在人类蛋白质中观察到了46,000种酪氨酸,但对大多数这些位点的功能和调节知之甚少。为了测试磷酸化的作用,主要挑战是产生重组磷酸蛋白。 mu-对酸性氨基酸的标记通常无法复制磷酸化的酪氨酸残基的大小和电荷,而合成氨基酸掺入的成本很高,产量相对较低。 在这里,我们展示了一种方法,灵感来自于如何通过二次焦油互动来发现细胞中的天然玫瑰氨酸激酶,从而增强了酪氨酸激酶的先天催化特异性,而无需过多。 我们设计了用于多种方法的多种方法,用于在大肠杆菌中产生高产量的磷酸蛋白产物。 在这里,我们测试磷酸化作为靶向相互作用(SH3-聚丙烯序列)的函数的函数,该磷酸化是跨不同特异性山脉激酶的不同反应方法。 该系统提出了一种廉价且可拖动的系统,用于产生磷蛋白和磷酸肽,我们演示了如何用于测试EGFR和PD-1靶标的抗体特异性。 这种方法是通过体外反应和共表达方法的灵活性来增强重组蛋白上的重组蛋白的共同作用的一种概括方法。 我们将其称为SISA-KIT,用于信号启发的合成增强激酶工具包。主要挑战是产生重组磷酸蛋白。mu-对酸性氨基酸的标记通常无法复制磷酸化的酪氨酸残基的大小和电荷,而合成氨基酸掺入的成本很高,产量相对较低。在这里,我们展示了一种方法,灵感来自于如何通过二次焦油互动来发现细胞中的天然玫瑰氨酸激酶,从而增强了酪氨酸激酶的先天催化特异性,而无需过多。我们设计了用于多种方法的多种方法,用于在大肠杆菌中产生高产量的磷酸蛋白产物。在这里,我们测试磷酸化作为靶向相互作用(SH3-聚丙烯序列)的函数的函数,该磷酸化是跨不同特异性山脉激酶的不同反应方法。该系统提出了一种廉价且可拖动的系统,用于产生磷蛋白和磷酸肽,我们演示了如何用于测试EGFR和PD-1靶标的抗体特异性。这种方法是通过体外反应和共表达方法的灵活性来增强重组蛋白上的重组蛋白的共同作用的一种概括方法。我们将其称为SISA-KIT,用于信号启发的合成增强激酶工具包。
摘要:folfoxiri,即5-脂肪酸,奥沙利铂和伊立替康的组合是对结直肠癌(CRC)的第一线治疗,但非人性化和侵略性。在这项研究中,为了模仿被诊断为晚期CRC并接受Folfoxiri长期治疗的患者的临床状况,我们已经生成了用Folfoxiri长期治疗的CRC细胞克隆。与未得到治疗的调用相比,在所有四个细胞系中,对Folfoxiri的敏感性均显着损失,如2D培养和异型3D共培养所示。通过在肌动灯的组织中形态变化观察到获得的耐药性诱导。块状RNA测序表明,在SW620抗性细胞系中,葡萄糖转运蛋白家族5(GLUT5)的重要上调,而在LS174T耐药细胞系中,蛋白质酪氨酸磷酸酶磷酸酶S(PTPRS)的显着下调和氧气磷酸化酶脱氢酶含量(oxoglutarate eDhifeNAPE)(蛋白酪氨酸磷酸化酶受体S(PTPRS)的显着下调。通过RAS-RAF-MEK-ERK途径作用的优化的低剂量协同药物组合(ODC)克服了对Folfoxiri的抗性。ODC抑制了SW620和LS174T 3DCC中的细胞代谢活性,分别抑制了高达82%。
日本东京Eisai Co.,eisai Co.,日本东京}酪氨酸-P-氨基苯甲酸是一种合成肽,由苯甲酸,酪氨酸和para-氨基苯甲酸(PABA)组成(PABA)(4)。它提供了胰腺外分泌功能的定量和非侵入性测量。苯二胺从胃肠道口服吸收不良,但很容易被胰腺酶(一种胰腺酶)释放PABA的α-联链蛋白酶(一种)。paba被吸收在小肠中,在肝脏中偶联(主要是甘氨酸结合),并在尿液中排出。如果胰腺疾病中的外分泌能力受损,则扁豆胺不足以降解,PABA结合物的尿液排泄降低。因此,如果口服给定数量的胆红素,并且在一段时间内测量了尿PABA含量以确定其排泄率,则这将反映胰腺的外分泌功能,并允许对胰腺外分泌功能进行定量诊断(4)。与PABA检验的有用性相反,在放射治疗前有症状的局部晚期PDAC患者中胰腺外分泌功能的定量评估没有报道。这项研究的目的是在放射治疗前定量地评估有症状的局部晚期PDAC患者的胰腺外分泌功能。
缩写:BRAF V600E,BRAF 蛋白 600 位上缬氨酸 (V) 取代为谷氨酸 (E);CI,置信区间;dMMR,错配修复缺陷;Her2,人类表皮生长因子受体 2;IHC,免疫组织化学;MSI-H,微卫星不稳定性高;mut/Mb,每兆碱基突变数;NGS,下一代测序;PD-1,程序性死亡 1;r/r,复发/难治;TMB-H,肿瘤突变负担高;TRK,酪氨酸受体激酶。
背景和目标:促进胆管癌(CCA)的新颖有效的医学疗法有未满足的需求。河马途径效应子,与YES相关的蛋白(YAP)在CCA中具有致癌性,但从历史上看很难靶向thera。最近,我们描述了LCK原始癌基因,SRC家族酪氨酸激酶(LCK)在通过酪氨酸磷酸化激活YAP中的新作用。这导致了以下假设:LCK通过调节YAP活性是CCA中可行的治疗靶标。方法:一种新型的酪氨酸激酶抑制剂,具有LCK相对选择性,NTRC 0652-0,在体外和CCA细胞中是药效的促进性领导的。对八个CCA患者衍生的类器官进行了表征,并测试了对NTRC 0652-0的敏感性。使用了两种带有FILBLAST生长因子受体2(FGFR2)的患者衍生的异种移植模型 - 用于体内药代动力学,毒性和效率的体内评估。结果:NTRC 0652-0在体外和CCA细胞中表现出对LCK抑制作用的选择性。NTRC 0652-0抑制 LCK导致YAP的酪氨酸磷酸化,核定位和共转录活性降低,并导致CCA细胞系中的凋亡细胞死亡。 测试的患者衍生的类器官的子集表现出对NTRC 0652-0的敏感性。 CCA具有FGFR2融合的CCA被鉴定为潜在的易感且临床上相关的遗传亚群。 结论:一种新型的LCK抑制剂NTRC 0652-0,抑制YAP信号传导,并在CCA细胞系中证明了临床前的效能,以及患者衍生的类器官和异种移植模型。LCK导致YAP的酪氨酸磷酸化,核定位和共转录活性降低,并导致CCA细胞系中的凋亡细胞死亡。测试的患者衍生的类器官的子集表现出对NTRC 0652-0的敏感性。CCA具有FGFR2融合的CCA被鉴定为潜在的易感且临床上相关的遗传亚群。 结论:一种新型的LCK抑制剂NTRC 0652-0,抑制YAP信号传导,并在CCA细胞系中证明了临床前的效能,以及患者衍生的类器官和异种移植模型。CCA具有FGFR2融合的CCA被鉴定为潜在的易感且临床上相关的遗传亚群。结论:一种新型的LCK抑制剂NTRC 0652-0,抑制YAP信号传导,并在CCA细胞系中证明了临床前的效能,以及患者衍生的类器官和异种移植模型。在FGFR2融合阳性CCA的患者衍生异种移植模型中,NTRC 0652-0的每日口服治疗导致血浆稳定的血浆和肿瘤药物水平,可接受的毒性,降低YAP酪氨酸磷酸化,并显着降低肿瘤的生长。
解聚。这种特性被称为微管的动态或动态不稳定性,主要发生在微管末端(7)。因此,这种动态不稳定性是指微管末端的解聚和生长变化。微管的动力学和特定功能主要受微管结合蛋白、微管蛋白翻译后修饰和微管蛋白亚型的调节(8,9)。其中包括微管聚合酶、微管解聚酶、乙酰化、酪氨酸化/去酪氨酸化、解聚蛋白和微管剪接蛋白(10,11)。GTP水解是调节微管动态不稳定性的能量来源。当微管蛋白添加到微管末端时,与微管蛋白结合的GTP水解为微管蛋白-GDP和无机磷酸盐Pi(12)。然后,Pi 从微管中分离出来,留下由 GDP 和微管组成的微管核心 (13)。含有微管蛋白结合 GTP 或 GDP-Pi 的微管末端对于解聚是稳定的。同时,微管蛋白-GDP 和无机磷酸盐 Pi 的释放会诱导微管蛋白分子构象的变化,从而产生微管聚合物。由此产生的聚合物是不稳定的,这会导致微管受损或缩短 (14)。由 GTP 水解驱动的微管末端构象变化为各种微管结合蛋白提供了理想的结构,以精确调节微管的动态不稳定性 (12)。
摘要:中枢神经系统 (CNS) 受到损伤会导致早期炎症反应,这可作为神经功能障碍的初始指标。纳米颗粒药物输送系统提供了一种机制,可增加药物进入 CNS 中特定细胞类型,例如小胶质细胞,即负责先天免疫反应的驻留巨噬细胞。在本研究中,我们开发了两种基于纳米颗粒的载体,作为向小胶质细胞输送药物的潜在治疗诊断系统。合成了基于聚乳酸-乙醇酸共聚物 (PLGA) 和 L-酪氨酸多磷酸酯 (LTP) 的纳米颗粒,以封装磁共振成像 (MRI) 造影剂钆-二乙烯三胺五乙酸 (Gd[DTPA]) 或抗炎药物咯利普兰。观察到小胶质细胞对两种聚合物制剂的强劲吸收,且无毒性证据。在混合胶质细胞培养中,我们观察到小胶质细胞比星形胶质细胞更优先内化纳米粒子。此外,我们的纳米粒子暴露于小胶质细胞不会诱导促炎性细胞因子、肿瘤坏死因子 α (TNF- α )、白细胞介素-1 β (IL-1 β ) 或白细胞介素-6 (IL-6) 的释放。这些研究为开发 LTP 纳米粒子作为将成像剂和药物输送到神经炎症部位的平台奠定了基础。关键词:纳米粒子、l-酪氨酸多磷酸盐、小胶质细胞、治疗诊断 ■ 简介
a 发现指在任何肿瘤类型中首次发现。b 可操作性基于对该生物标志物定义的疗法的首次肿瘤不可知论批准。BRAF,v-raf 鼠肉瘤病毒致癌基因同源物 B1;CCA,胆管癌;CRC,结直肠癌;dMMR,缺陷错配修复;FDA,美国食品药品监督管理局;MSI,微卫星不稳定性;NTRK,神经营养酪氨酸受体激酶;RET,ret 原癌基因;TMB,肿瘤突变负担。