本手册是《不列颠哥伦比亚省生物多样性组成部分标准》(CBCB)系列之一,该系列介绍了专门为具有类似清单要求的物种群设计的标准协议。该系列包括一本入门手册(物种清单基础 1 号),其中描述了 RIC 的历史和目标,并概述了根据 RIC 标准进行野生动物清单的一般过程,包括清单强度的选择、采样设计、采样技术和统计分析。《物种清单基础》手册提供了重要的背景信息,在开始 RIC 野生动物清单之前应彻底阅读。RIC 标准还适用于脊椎动物分类学(2 号)、动物捕获和处理(3 号)和无线电遥测(5 号)。现场人员在参与涉及上述任何一项活动的清单之前应彻底熟悉这些标准。
本手册是《不列颠哥伦比亚省生物多样性组成部分标准》(CBCB)系列之一,该系列介绍了专门为具有类似清单要求的物种群体设计的标准协议。该系列包括一本入门手册(物种清单基础第1 号),其中描述了 RIC 的历史和目标,并概述了根据 RIC 标准进行野生动物清单的一般过程,包括清单强度的选择、采样设计、采样技术和统计分析。物种清单基础手册提供了重要的背景信息,在开始 RIC 野生动物清单之前应彻底阅读。RIC 标准也适用于脊椎动物分类学(第2 号)、动物捕获和处理(第3 号)和无线电遥测(第5 号)。现场人员在参与涉及任何这些活动的盘点之前,应该彻底熟悉这些标准。
本课程为机器人探索以及AI驱动的映射和采样技术提供了全面的介绍,该技术量身定制,用于太空探索和地球观察。学生将在计算机视觉,同时本地化和映射(SLAM),多机器人协调以及使用高级AI工具在极端环境中运营等关键领域获得专业知识。课程强调现实世界的实施,将讲座与动手项目结合使用移动性自主系统,包括自主地面,空中和水生机器人作为数字双胞胎可用的以及在梦境实验室中的物理。该课程最终达到了一个基于小组的最终项目,学生在该项目中设计并展示了端到端的机器人系统,用于未来的空间探索,行星科学和地球观察。
背景:大数据驱动和人工智能 (AI) 与机器学习 (ML) 方法从未与医院信息系统 (HIS) 集成,用于预测急诊科 (ED) 胸痛患者的主要不良心脏事件 (MACE)。因此,我们进行了本研究以阐明这一点。方法:2009 年至 2018 年期间,共确定了三家医院 85,254 名患有胸痛的 ED 患者。我们将患者随机分为 70%/30% 的组别,以进行 ML 模型训练和测试。我们使用来自他们电子健康记录的 14 个临床变量,使用合成少数过采样技术预处理算法构建随机森林模型,以预测 1 个月内的急性心肌梗死 (AMI) 和 1 个月内的全因死亡率。还对随机森林、逻辑回归、支持向量聚类 (SVC) 和 K 最近邻 (KNN) 模型的预测准确度进行了比较。
将机器学习 (ML) 技术集成到车载自组织网络 (VANET) 中,可为自动驾驶和 ITS 应用提供有前景的功能。本文使用 DSRC 数据来评估不同 ML 模型(包括朴素贝叶斯、随机森林、KNN 和梯度提升)在正常和对抗场景中的有效性。由于数据集相对不平衡,因此采用合成少数过采样技术 (SMOTE) 进行采样,并采用防御性蒸馏来提高模型对对抗性扰动的弹性。从结果中可以清楚地看出,梯度提升和随机森林等模型在两种情况下都表现出很高的准确性,从而表明在出现新威胁时使用机器学习来提高 VANET 安全性和可靠性的潜力。通过这项研究,阐明了 ML 在保护车辆通信方面的应用对于提高交通安全和流量的重要性。
类失衡。不平衡的数据集可以使机器学习模型偏向多数级别,从而影响了他们准确预测少数类别的能力[24]。数据不平衡的问题通常与错误分类的问题有关,在这些问题中,与多数类相比,少数类别往往会被错误分类[25]。可以通过减小或过度采样来减少问题,从而产生类平衡的数据。合成的少数群体过度采样技术(SMOTE)是一种非常流行的过采样方法,旨在改善随机的过度采样[26]。根据Batista等人[25],过度采样方法比未经少采样方法给出了更好的结果。当数据高度不平衡时,多数族裔和少数族裔之间的显着差异可以通过过度采样方法来处理。通过添加或删除数据集中的样本,可以解决不平衡的类分布问题[27]。
1,2,3,4 B.Tech学生,计算机科学系,米高梅工程学院。5指南,助理。教授(Mtech。B.E. ),部门 MGM工程学院计算机科学与工程师。 摘要信用卡欺诈已成为对金融部门的重大威胁,这是在线交易的快速增长和欺诈活动不断发展的复杂性的推动下。 本研究旨在设计和实施基于机器学习的解决方案,能够有效地检测欺诈性信用卡交易。 通过应对数据集不平衡和误报等挑战,该研究采用了包括合成少数群体过采样技术(SMOTE)在内的预处理技术,以及高级机器学习算法,例如逻辑回归,XGBOOST和隔离林。 它突出了这些模型增强欺诈检测准确性和可扩展性的潜力,为现实世界应用提供了一种实用且可部署的工具。 这种全面的方法可确保该系统稳健,自适应和用户友好,为改善金融安全和数字支付系统的信任铺平了道路。 关键字:信用卡欺诈检测,机器学习算法,数据不平衡1。 简介B.E.),部门MGM工程学院计算机科学与工程师。摘要信用卡欺诈已成为对金融部门的重大威胁,这是在线交易的快速增长和欺诈活动不断发展的复杂性的推动下。本研究旨在设计和实施基于机器学习的解决方案,能够有效地检测欺诈性信用卡交易。通过应对数据集不平衡和误报等挑战,该研究采用了包括合成少数群体过采样技术(SMOTE)在内的预处理技术,以及高级机器学习算法,例如逻辑回归,XGBOOST和隔离林。它突出了这些模型增强欺诈检测准确性和可扩展性的潜力,为现实世界应用提供了一种实用且可部署的工具。这种全面的方法可确保该系统稳健,自适应和用户友好,为改善金融安全和数字支付系统的信任铺平了道路。关键字:信用卡欺诈检测,机器学习算法,数据不平衡1。简介
摘要 - 糖尿病(DM)是一个全球健康问题,必须尽早诊断出来,并得到很好的管理。本研究提出了使用机器学习(ML)模型进行糖尿病预测的框架,并配有可解释的人工智能(XAI)工具,以投资ML模型的预测的预测准确性和解释性。数据预处理基于糖尿病二进制健康指标数据集中使用的合成少数群体过采样技术(SMOTE)和特征缩放数据集,以处理临床特征的类别失衡和可变性。整体模型提供了高精度,测试精度为92.50%,ROC-AUC为0.975。BMI,年龄,一般健康,收入和体育锻炼是从模型解释中获得的最有影响力的预测因素。这项研究的结果表明,与XAI结合的ML是开发用于医疗保健系统中使用的准确和计算透明工具的一种有希望的方法。
13方法:本研究使用模仿IV数据库分析重症监护患者的结果,14个重点是成人败血症病例。采用最新的数据提取工具,例如Google Big-15查询,并且按照严格的选择标准,我们在本研究中选择了38个功能。此选择16还通过全面的文献综述和临床专业知识来告知。数据预处理17包括处理丢失值,重组分类变量以及使用合成Mi-18诺元过采样技术(SMOTE)来平衡数据。我们评估了几种机器19学习模型:决策树,梯度提升,XGBOOST,LIGHTGBM,多层观察者20 TRON(MLP),支持向量机(SVM)和随机森林。使用了顺序减半和21个分类(SHAC)算法进行高参数调整,并且使用了火车测试拆分22和交叉验证方法来进行性能和计算效率。23
我们开发了一个机器学习(ML)框架,以预测接受MV的ICU患者的医院死亡率。使用MIMIC-III数据库,我们通过ICD-9代码确定了25,202名合格患者。我们采用了向后消除和套索方法,根据临床见解和文献选择了32个功能。数据预处理包括消除超过90%丢失数据的列,并为其余缺失值使用平均插补。为解决阶级失衡,我们使用了合成的少数群体过度采样技术(SMOTE)。我们使用70/30火车 - 策略分开评估了几种ML模型,包括Catboost,XGBOOST,DECOMAL TROED,随机森林,支持向量机(SVM),K-Nearest邻居(KNN)和Logistic回归。在准确性,精度,召回,F1得分,AUROC指标和校准图方面,选择了Catboost模型的出色性能。