EIC 项目由布鲁克海文国家实验室和托马斯·杰斐逊国家加速器设施联合管理。它已通过了能源部五个“关键决策”(CD) 里程碑中的前两个,目前处于设计阶段 ()。保持这一进度对于吸引和留住建设和运营这种最先进设施所需的高技能劳动力至关重要,并为建筑工人、设备制造商和材料供应商、技术人员、工程师、科学家和早期职业专业人士提供额外的就业机会,以及为当地、州和国家企业以及少数族裔和女性拥有的企业提供经济机会。预计建设将于 2024 年左右开始,运营将于 2030 年代初开始,随后将产生 20 多年的科学影响以及当今尚不存在的创新和改进机会。
摘要 量子信息处理的未来需要稳定的硬件平台来可靠、低错误率地执行量子电路,以便在其基础上构建工业应用的解决方案。与其他平台一样,离子阱量子计算目前被证明非常适合从桌面实验室实验过渡到机架式本地系统,这些系统允许在数据中心环境中运行。在数据中心内的量子计算机上成功实现工业应用之前,需要解决几个技术挑战,并需要优化和自动化控制许多自由度。这些必要的发展包括从根本上定义所支持指令集的离子阱架构、限制量子比特操作质量的控制电子设备和激光系统,以及基于量子比特属性和门保真度的量子电路优化编译。在本章中,我们介绍了离子阱量子计算平台,介绍了 Alpine Quantum Technologies 离子阱硬件和机架式量子计算系统的当前技术水平,并重点介绍了执行堆栈的各个部分。
目的:使用小体积电离室进行扁平过滤器(FF)和扁平过滤滤器(FFF)varian Truebeam stx线性加速器的扁平过滤器(FFF)横梁,研究小型和大型电离室的离子重组(K S)和极性校正因子(KPOL)。材料和方法:所有读数均以100厘米源到DMAX的表面距离(SSD)和10厘米深度的PTWBeamScan®水幻影进行测量,为6、10、10、15、6FFF和10FFF MEGA电压光光束,平方场的最大剂量速率为0.5×0.5cm2至30×30 cm2。分别雇用了两个离子腔室,例如PTW Semiflex 3d 31121和农民室30013,分别为0.07cc和0.6cc。根据国际原子能局技术报告系列(IAEA TRS 398)的第398号协议,从读数中计算了校正因子。用“两压方法”(TVM)获得的离子重组值用1/v对1/Q曲线(Jaffé-plot)验证了所有束能。结果:从结果来看,离子重组校正因子(K S)从未超过1.032,此外,Jaffé-Plot的结果与TVM值非常吻合(高达0.3%),除了方形0.5×0.5×0.5cm 2和1×1cm 2(最高8%)。KS值完全独立于所有光束能的场大小。KPOL值随场大小而独立于2×2cm 2的平方场差异,在2×2cm 2至10×10cm 2之间的平方场2×2cm 2中,绘图几乎显示了所有辐射条件的直线。对于所有平方场(0.5×0.5cm 2和1×1cm 2除外),FFF梁的K S和KPOL值分别差异为最大0.6%和0.1%。结论:小场剂量计的饱和电压大于剂量计的工作电压。小场的KS和KPOL值与标准字段(参考字段)不同。使用标准“两压方法”确定的KS可以充分考虑高剂量率FFF梁的高剂量率FFF梁。从FFF梁获得的结果不会显着偏离扁平的梁。平方场的不适当读数0.5×0.5cm 2和1.0×1.0cm 2可能是由于缺乏剂量计响应,这是由于缺乏侧向带电粒子平衡和腔室平均效果的结果。
本文的目的是对离子阱量子计算机的操作进行一般性描述,从一维陷阱中离子的限制到逻辑门的实现。我们从通过谐波势限制离子的保罗离子阱的描述开始,然后描述了如何通过与外部激光产生的电磁场相互作用来改变离子的内部状态。我们详细研究了主要类型的单量子比特门和两种类型的多量子比特 CNOT 门,即 Cirac-Zoller 门和 Mølmer-Sørensen 门。再次,这种门的实现已经在囚禁离子计算机的具体情况下进行了描述。在最后一部分,我们介绍了 IonQ 公司在线提供的真实离子阱处理器上的量子算法的实现。具体来说,准备并测量了两种类型的量子态:贝尔态和更一般的 GHZ 态。
在西门子,质量问题没有捷径可走。适当的再生对于实现最佳性能、交换容量、总体积输出和低运营成本至关重要。我们的质量控制专家会仔细进行预测试,然后仅选择符合我们严格要求的树脂批次,确保您从每个再生去离子器中获得最高质量的水和最佳性能。对于关键的血液透析应用,我们的 SDI 系统在 FDA 注册的设施中再生,符合 QSR/GMP(质量体系法规/良好生产规范)要求,并符合加拿大卫生部的所有医疗器械法规。
在不断发展的现代社会社会中,对可再生能源利用和环境保护的需求不断增长,已致力于利用电能转换和存储设备,以最大程度地利用间歇性可再生太阳能和风能[1-6]。在这些电能量存储设备中,锂离子电池(LIB),具有高能量密度,较长的循环寿命和环境良性良性的功能,已广泛应用于便携式电子设备,电动车辆和智能网格中[7-13]。然而,在地壳中含有的锂资源,相关的高成本阻碍了Libs的大规模应用[14-20]。然而,具有类似于李的物理化学特性,钠和钾具有自然界的大量资源。因此,对钠离子电池(SIBS)和钾离子电池(KIBS)进行了广泛研究
使用带钨丝的 UHV 测量头,测量范围从 1 x 10 -3 到 3 x 10 -11 mBar 以下。下限取决于测量头、电缆结构、电缆长度和使用条件。上限由灯丝的可接受寿命决定,可使用钍或氧化钇涂层铱灯丝延长。
正如我们在科幻电影中不断看到的使用离子或电力推进进行星际太空旅行的情况一样,即使不是星际科学家也已经开始将这项技术视为星际技术的一种选择,它是高效燃料使用和电力的完美结合,它比任何其他技术都非常便宜和快捷。在物理学中,离子推进是航天器使用的一种电力推进。与任何传统的火箭推进方法一样,离子推进依赖于牛顿第三定律:每个作用都有一个相等和相反的反作用。典型的火箭发动机使用内部机制加速某种类型的废气远离火箭。由于这构成了废气上的力,发动机会受到相反方向的力。至关重要的是,推进需要损失质量
与传统的固体/水凝胶平台形成鲜明对比的是,水不溶性液体(如全氟碳和硅酮)允许哺乳动物细胞通过界面处形成的蛋白质纳米层 (PNL) 粘附。然而,通常用于液体细胞培养的氟碳和硅酮仅具有较窄的物理化学参数范围,并且无法用于多种细胞培养环境。本文提出,水不溶性离子液体 (IL) 是一类新的液体基质,具有可调的物理化学性质和高溶解能力。四烷基膦基 IL 被确定为无细胞毒性 IL,人类间充质干细胞可在其上成功培养。通过烷基链延长减少阳离子电荷分布或离子性,界面允许细胞扩散并具有成熟的焦点接触。高速原子力显微镜对 PNL 形成过程的观察表明,阳离子电荷分布显著改变了蛋白质吸附动力学,这与蛋白质变性程度和 PNL 力学有关。此外,通过利用 IL 的溶解能力,可以制造离子凝胶细胞支架。这使我们能够进一步确定体相亚相力学对液基培养支架中细胞机械传感的重大贡献。
