摘要 — 飞机的起飞重量 (TOW) 是飞机性能的一个重要方面,会影响从飞行轨迹到燃油消耗的大量特性。由于其依赖于乘客和货物载重因素以及运营策略等因素,特定航班的 TOW 通常不提供给运营航空公司以外的实体。上述观察结果促使开发准确的 TOW 估计值,可用于燃油消耗估计或轨迹预测。本文提出了一种基于高斯过程回归 (GPR) 的统计方法,使用从起飞地面滑行观测到的数据来确定 TOW 的平均估计值和相关的置信区间。选择预测变量时要同时考虑它们的易用性和底层飞机动力学。模型开发和验证是使用飞行数据记录器档案进行的,该档案还提供地面真实数据。发现所提出的模型的平均 TOW 误差为 3%,平均适用于八种不同类型的飞机,比飞机噪声和性能 (ANP) 数据库中的模型误差小近 50%。与仅提供 TOW 点估计的 ANP 数据库相比,GPR 模型通过提供概率分布来量化估计中的不确定性。最后,开发的模型用于估计飞机上升过程中的燃油流量。GPR 模型估计的 TOW 用作燃油流量估计的输入。与确定性 ANP 模型或不使用 TOW 作为明确输入的模型相比,所提出的 TOW 统计模型能够更好地量化燃油流量的不确定性。索引术语 — 统计建模;起飞重量 (TOW);燃油流量;飞行数据记录器 (FDR);起飞地面滑行
重量和重心的测量对飞机的设计、制造和使用有着十分重要的意义。飞机重量和重心的变化将影响飞机的飞行、机动、起飞和着陆性能,关系到人员安全和飞机的飞行安全,因此准确、快速地测量重量和重心是非常必要的。重量和重心的测量是为了确定飞机的重量和重心,并验证理论上的重量和重心,并且根据具体飞行的要求对飞机的重心进行重新定位[1-2]。在设计和装配阶段,系统调试之前必须进行重量和重心的测量,在维修或改装之前和之后也必须进行这项工作。重量和重心的超限严重偏离将影响飞机的正常飞行,因此重量和重心的测量对于飞机制造非常重要。目前广泛使用的飞机重量及重心测量方法有千斤顶法、称重台法、复合法等。随着现代飞机越来越多地采用新技术、新方法,飞机的系统集成度越来越高,性能越来越先进,现有的测量方法已不能满足飞行安全对高精度、高速度、高可靠性测量的要求。因此有必要对现有的测量技术进行分析和总结,提出新的测量技术。本文在分析现有方法、总结发展趋势的基础上,提出了一种新的柔性测量方法来满足上述需求。
复合材料结构可以显著降低客机的重量。然而,增加的生产成本需要应用具有成本效益的设计策略。因此,需要一个比较值,用于评估设计方案的成本和重量。直接运营成本 (DOC) 可用作此比较值;它捕获了飞机飞行时产生的所有成本。在本文中,提出了一种复合材料结构的成本/重量优化框架。它考虑了制造成本、无损检测成本和基于飞机重量的终生燃油消耗,因此使用简化版本的 DOC 作为目标函数。首先,解释飞机设计的不同阶段。然后重点讨论复合结构的优点和缺点、设计约束和允许值以及无损检测。此外,还讨论了多目标优化和成本与重量的综合优化等主题。制造成本可以通过不同的技术来估算;在这里,基于特征的成本估算和参数成本估算被证明最适合所提出的框架。最后,对所附论文进行了简要总结。第一篇论文包含一项参数研究,其中针对一系列成本/重量比(重量损失)和材料配置优化了蒙皮/纵梁面板。重量损失定义为特定的终生燃油消耗,取决于飞机的燃油消耗、燃油价格和优化器的观点。结论是,设计方案的理想选择既不是低成本也不是低重量,而是两者的结合。第二篇论文提出在部件的设计过程中纳入无损检测成本,并根据检测参数调整每个层压板的设计强度。因此,超声波检测的扫描间距被视为一个变量,代表(保证的)层压板质量的指标。结果表明,在早期设计阶段分配和调整层压板的质量水平可以降低直接运营成本。
1 简介 质量单位千克是国际单位制 (SI) 中唯一的基本单位,仍然以实物来定义。其定义是: “质量”和“重量”的区别在于,质量是物体所含物质的量度,而重量是作用于物体的引力。然而,在交易过程中,重量通常被认为与质量相同。 千克的国际原器保存在位于巴黎塞夫勒的国际度量衡局 BIPM。它由 90% 的铂和 10% 的铱合金制成,呈圆柱体,高 39 毫米,直径 39 毫米。它存储在专门设计的三重钟罩中,在常压下运行。约有 60 个国家拥有 BIPM 千克 (K) 的铂铱合金复制品,其值直接由 K 确定。英国国家物理实验室 (NPL) 拥有英国复制品 (18 号),称为国家千克原型,或简称为 18 号千克,是英国整个质量标度的基础。NPL 参与了广泛的国际比对,以确保英国的测量结果与世界其他地方的测量结果相同。过去,一个国家的组织不接受除本国以外的任何 NMI 的可追溯性,这存在一些问题。随着通过 M 实现国际等效性的结构化方法的出现,这种情况已得到解决
用于表征飞机机身撞击损伤的光学工具 N.Fournier 1 – F. Santos 1 - C.Brousset 2 – JLArnaud 2 – JAQuiroga 3 1 NDT 专家,2 AIRBUS France,3 Universidad Cmplutense de Madrid 摘要:在飞机制造/组装过程中或交付后的使用中,机身外部可能会出现表面损伤。大多数此类缺陷与飞机尺寸相比都很小,通常分布在机身的整个表面。为了正确表征这类异常,无损检测领域一直需要新手段。它们需要可靠、便携、快速和准确。对于此类缺陷,光学技术通常可以提供好的解决方案。然后,开发了基于光学的新技术来满足飞机制造商对损伤表征的要求。具体来说,我们开发了一种基于阴影莫尔效应的便携式设备,用于表征飞机机身撞击损伤的精确几何形状。该系统易于使用、便携、快速且成本低廉。它将有助于操作员对缺陷进行分类,并在检查过程中节省大量时间。经过一段时间的测试后,该设备应在飞机的总装线上使用。1 – 简介:在航空领域,国家和国际机构都要求制造商、航空公司和维修机构严格遵守有关飞机安全和保障的现行规定。飞机的结构在使用过程中承受着巨大的机械负荷,每个部件都有确定的使用寿命。必须定期检查零件以检查其可用性,并在其整个使用寿命期间安排系统的无损检测。当发生损坏时,必须对面板进行额外的控制,以确保其完整性以便继续使用。结构复杂性的增加以及为提高机械性能和减轻结构重量而使用的新材料导致了新的控制手段的不断发展。这些工具必须与旧工具一样高效,更快、更准确、更自动化,并且对人为解释的限制性更强。这种演变是航空业所有参与者遵循的整体质量战略的一部分。在所有可能影响结构完整性的损坏中,意外表面凹痕是最受监控的损坏之一:必须控制受影响的区域,以确保不会产生裂纹、分层或剥离。在进行任何更深的无损检测控制之前,操作员必须评估表面和深度损坏的严重性。制造商的设计办公室会给出公差,以根据这些标准将损坏分类,从而确定后续操作。然后,控制员必须恢复凹痕的精确几何形状,主要有两个原因:帮助他们对损坏进行分类,并帮助设计办公室确定受影响结构的新机械属性(当凹痕几何形状足够关键以运行此类程序时)。2 - 凹痕表征工具:Moireview©:开发了一种新工具来满足凹痕表征方面的需求。该系统基于光学,可以检索受影响区域的 3D 形状。它的开发是对目前使用的机械手段(深度计、粗糙度仪……)的补充。此工具的基本规格是快速、自主、便携和易于使用。负责检查的操作员必须在飞机周围走动以检测损坏情况,并可能从地面、平台或发动机舱进行测量。此后,他们应该能够携带该工具进入难以接近的区域。考虑到飞机的整个表面,与相对较小的凹痕(可能有很多且遍布整个飞机)相比,系统必须快速,以便在合理的时间内完成完整的检查。最后,考虑到设计办公室给出的公差,该工具必须足够精确。