量子力学改变了我们对物理世界的看法,在过去的二十年中,物理系统的量化特征也已成为技术不同分支的资源[1,2]。尤其是,当计量学遇到量子机械时,就可以使用整个新的新特征来提高物理测量的精度,并构想新颖的量子增强方案以表征信号和设备[3-5]。相对论也改变了物理的范例,并发现了相关的技术应用[6]。因此,是否可以共同利用相对论和量子机械性能以提高物理测量的精度。在本文中,我们遵循了这一想法,并证明了范式相对论特征,重力时间扩张确实可能代表了可以与量子叠加一起使用的资源,以证明重力常数的估计或其变化。
回顾该学科的创立历史,大约从 1900 年到 1930 年代中期,涉及数十位物理学家甚至一些数学家的工作,涉及许多实验和观察,以及许多错误的开始和停止,我们将微积分呈现为既成事实,然后回溯以填补我们的理解。不过,读者一开始就应该明白,这种微积分有大量的实验依据。在这个开场讲座中,我们通过一个例子对比了经典力学和量子力学。这个例子清楚地说明了牛顿定律所表达的经典世界观与量子力学规则所表达的现代世界观之间的差异。谐振子是典型的物理系统,因此,对它的分析,无论是经典的还是量子的,都是该学科的原型。在本讲座中,我们将回顾谐振子的经典处理,并概述量子处理。量子处理似乎是临时的、没有动机的,应该会引起一些不安,甚至困惑。读者会看到,经典处理的方法和结果的极端简单性与量子处理的复杂性形成鲜明对比。事实上,虽然经典处理的应用和含义从数学本身就很明显,但量子处理的方法和结果却需要解释和阐释。我们在这里给出了量子处理的标准解释,但读者会发现,我们的解释虽然内部连贯,但却没有动机。这种解释是在数年的时间里与量子力学机制本身的发展同时发展起来的,但读者应该知道其他解释也是可能的。在本讲座的最后,我们将深入探讨一些围绕量子力学解释的基础问题。这与我们在本书中的其余部分的做法有所不同,在其余部分中,形式主义的发展优先于哲学问题。1 尽管如此,我们希望读者从一开始就意识到,量子力学的世界观与经典的世界观截然不同,留下了许多深刻的哲学问题。欢迎来到量子世界!
摘要 - 基于测量的量子计算(MBQC)是一种强大的技术,依赖于多数纠缠群集状态。要实现一组通用的量子门,因此,MBQC中的任何量子算法,我们都需要按适当的顺序测量群集状态矩阵,然后根据测量结果的进料进行最终校正。在光子量子架构中,Gottesman-Kitaev-Preskill(GKP)Bosonic Continule-Rible-变量(CV)编码是MBQC的绝佳候选者。GKP量子位允许轻松应用纠缠CZ门,用于使用梁拆分器生成资源群集状态。但是,准备高质量,现实,有限的GKP量子量可能是实验中的挑战。因此,可以合理地期望基于GKP的MBQC在群集状态下仅包含少数“良好”质量GKP量子台的实现。相比之下,其他量子位是弱挤压的GKP Qubits,甚至只是挤压真空状态。在本文中,我们分析了一组通用的简历门的性能,当使用不同质量(良好和不良)的GKP量子和挤压真空状态的混合在一起来创建群集状态。通过比较性能,我们确定了群集状态中每个门的关键量子,以实现其MBQC。我们的方法涉及将门的输出与相应的预期输出进行比较。我们介绍了不同栅极实现的逻辑错误率,这是GKP挤压的函数,用于使用Xanadu的草莓田Python库来模拟和确定。索引项 - 基于测量的量子计算,量子连续变量,Gottesman-Kitaev-Preskill Qubits
量子AI的量子计算结合以及专家系统为机器学习算法开辟了一个新的可能性领域。Quantum机器学习公式(QML)在涉及处理大数据以及揭示秘密模式时,提供了相当的优势。通过利用量子叠加和纠缠,QML公式可以同时查看许多机会,从而获得更精确的预测以及耐用的设计。在交易背景下,量子AI的增强设备学习能力为创新的交易方法打开了可以动态调整到不断变化的市场条件的创新交易方法,不可避免地会导致更高的回报和降低的威胁。
•世界是量子,我们很幸运,任何适合古典计算机的东西 - 大型量子计算机可以在HEP中处理计算,否则无法访问 - 这打开了新的边界并扩展了LHC,LIGO,LIGO,EIC和DUNE
疫苗是最有价值的人类健康技术之一。从18世纪的爱德华·詹纳(Edward Jenner)对Cowpox进行的Variolation实验,再到乔纳斯·萨克(Jonas Salk)开发脊髓灰质炎的整个病原体疫苗的努力,疫苗研究产生了一些历史上最重要的医疗突破。疫苗刺激针对特定病原体的免疫反应,它必须包含与该病原体有关的抗原。第一代疫苗通常由活或灭活的整个病原体组成。尽管其历史上的成功并广泛采用,但整个病原体疫苗在包含无关紧要的和潜在有害的病原体成分时仍引起了安全问题。他们也可以复制或恢复为致病形式(1)。亚基疫苗仅包含刺激免疫反应所需的病原体的最小成分,例如重组蛋白。这些技术改善了疫苗的安全性(2)。然而,在刺激免疫反应时,亚基疫苗本质上比整个病原体疫苗的效力较低。由于这种限制,它们通常包含额外的免疫刺激分子(称为佐剂)来发展保护性免疫(2)。其他最近的疫苗技术包括病毒载体和基于核酸的疫苗,该疫苗编码致病性抗原
摘要 - 量子计算的出现对传统的加密系统构成了深远的威胁,暴露了损害依赖RSA,ECC和类似经典加密方法的数字通信渠道安全性的漏洞。量子算法,尤其是Shor的算法,它利用了量子计算机的固有计算能力来有效地解决这些加密方案的基础数学问题。在响应中,量词后加密(PQC)成为一个关键领域,旨在开发弹性加密算法不受量子攻击的影响。本文描述了经典加密系统量量子攻击,阐明量子计算的原理的脆弱性,并介绍了各种PQC算法,例如基于晶格的密码学,基于代码的密码,基于哈希的密码学和多变量多核电密码学。该研究强调了PQC在量子计算进步中确保数字通信的重要性,这项研究强调了其在面对新兴量子威胁时在保护数据完整性,机密性和真实性方面的关键作用。
高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
图15.4:(a)两个双z切入点之间的逻辑CNOT操作的电路图,由双X式量子介导。在此过程中,测量目标量子位,并以|+⟩初始化了新的双z切割量子标式,以取代目标值。(b)描述执行三个CNOT步骤的孔的编织的描述:每个双Z(x) - cut量子值以一对黑色(蓝色)线表示,其中沿x轴显示孔的孔的移动。在初始化或测量量子线时,对应于同一量子的两个孔的两条线。(c)简化编织的表示形式,仅作为栅极的中间工具显示双X-Cut值。实际上,双Z切量盘根本不需要移动,并且可以在测得的旧目标的位置初始化新的目标量子定位。(d) - (f)在两个双X切位数之间间接cnot的等效表示。[FMMC12]。在美国物理社会的[FMMC12]版权所有(2012年)的允许下转载数字。... 176
纠缠是量子技术的关键资源,是令人兴奋的多体现象的根源。然而,当现实世界的量子系统与其环境相互作用时,量化其两部分之间的纠缠是一项挑战,因为后者将跨边界的经典关联与量子关联混合在一起。在这里,我们使用混合态的算子空间纠缠谱有效地量化了这种现实开放系统中的量子关联。如果系统具有固定电荷,我们表明谱值的子集编码了不同跨边界电荷配置之间的相干性。这些值的总和,我们称之为“配置相干性”,可用作跨边界相干性的量化器。至关重要的是,我们证明了对于纯度非增映射,例如具有 Hermitian 跳跃算子的 Lindblad 型演化,配置相干性是一种纠缠度量。此外,可以使用状态密度矩阵的张量网络表示有效地计算它。我们展示了在存在失相的情况下在链上移动的无自旋粒子的配置相干性。我们的方法可以量化广泛系统中的相干性和纠缠,并激发有效的纠缠检测。
