意识在塑造现实中的作用是印度哲学和量子物理学的核心主题。印度哲学传统,尤其是那些植根于吠檀多哲学的哲学传统,主张意识(阿特曼)作为基本现实的首要地位。在量子物理学中,观察者效应表明观察行为会影响粒子的行为,凸显了意识与量子世界之间不可分割的联系。印度哲学中的意识与量子物理学中的观察者效应之间的相似性为深刻思考感知和现实的本质打开了一扇大门(Radhakrishnan,S. 1958;Menon,S. 2015;Ray,PK 2003;Mohanty,AK 2012;Nader,T.,& Orme-Johnson,D. 2013)。我们的集体意识能否在塑造宇宙结构方面发挥作用,就像观察者塑造量子现象一样?
本文讨论了超维计算(HDC)(又称向量符号架构(VSA))中全息特征向量的分解。HDC 使用具有类似大脑特性的高维向量来表示符号信息,并利用高效的运算符以认知方式构建和操作复杂结构化数据。现有模型在分解这些结构时面临挑战,而分解过程对于理解和解释复合超向量至关重要。我们通过提出 HDC 记忆分解问题来应对这一挑战,该问题捕捉了 HDC 模型中常见的构造模式。为了有效地解决这个问题,我们引入了超维量子记忆分解算法 HDQMF。HDQMF 的方法独特,利用量子计算提供高效的解决方案。它修改了 Grover 算法中的关键步骤来实现超向量分解,从而实现了二次加速。
序言 量子技术是一种新兴的范式,有望在未来几十年颠覆和革新计算、通信和传感。考虑到巨大的战略潜力和研究中意想不到的突破的可能性,仅来自各国政府的全球投资就超过 400 亿美元。在印度的背景下,印度政府的国家量子任务是加速该国在此领域研究的决定性一步。为了完成任务的任务,印度需要通过立即采取教学和培训措施来培养一支高技能的劳动力队伍。对这些劳动力进行的培训必须使他们达到全球标准,并同时满足量子技术发展的多学科需求——从核心硬件和后端工程支持到密码学和机器学习算法。因此,为了在印度创建一个蓬勃发展的量子培训生态系统,必须在本科和研究生阶段引入专门的课程,以及为参与本科和研究生教育的教职员工和教师开设课程。虽然具有国家重要性的机构已经开始了这方面的计划,但将这种培训扩展到全国更多的机构,使国家能够利用大量的学生资源,然后他们可以参与这项任务,加速实现目标。在此背景下,我们提出了本科阶段量子技术辅修课程的课程结构。在这里,我们认为量子技术包括所有四个垂直领域——量子计算和模拟、量子通信和密码学、量子传感、量子材料和设备。我们提出的课程至少涵盖 18 个学分。我们在这个课程中提出了理论和实验课程。我们假设每门课程为 3 个学分(1 个学分相当于理论课程每周 1 小时的课堂接触时间或实验课程 1 节 3 小时的实验室课程),从而使辅修课程至少涵盖 6 门课程。我们建议课程总学分超过 30 个学分,任何特定机构都可以根据该机构的教师情况从中选择 18 个学分。但是,为了保留辅修课程的核心任务,我们建议将几门课程设为必修课。我们相信,课程的这种灵活性将使机构能够轻松地开始在量子技术的一个或多个垂直领域培训学生。我们还认为,许多列出的课程也可以被不选择量子技术辅修课程的学生选为选修课。我们还鼓励机构和学生尽可能采用基于项目的学习方法,以增强课程的影响力。我们在设计课程时考虑到了机构的多样性以及不同的工程学科。我们相信所有工程学科的学生都可以从第三或第四学期开始选修这个辅修课程(假设 8 学期或 4 年制本科课程为标准格式)。选修这门课程的学生需要熟悉基础工程数学(基础线性代数、复数、概率和统计)和高中物理(牛顿定律、光学、热力学),以及编程基础知识(简单的算术运算,
量子通信基于量子态的生成和量子资源在通信协议中的利用。目前,光子被认为是信息的最佳载体,因为它们能够实现长距离传输,具有抗退相干性,而且相对容易创建和检测。纠缠是量子通信和信息处理的基本资源,对量子中继器尤为重要。超纠缠是一种各方同时与两个或多个自由度 (DoF) 纠缠的状态,它提供了一种重要的额外资源,因为它可以提高数据速率并增强错误恢复能力。然而,在光子学中,处理线性元素时,信道容量(即最终吞吐量)从根本上受到限制。我们提出了一种使用超纠缠态实现更高量子通信传输速率的技术,该技术基于在单个光子上多路复用多个 DoF,传输光子,并最终在目的地使用贝尔态测量将 DoF 解复用为不同的光子。按照我们的方案,只需发送一个光子即可生成两个纠缠的量子比特对。提出的传输方案为具有更高传输速率和对可扩展量子技术的精细控制的新型量子通信协议奠定了基础。
摘要。量子体积是一个全面的、单一的数字指标,用于描述量子计算机的计算能力。近年来,它呈指数级增长。在本研究中,我们将假设这种情况仍然如此,并将这一发展转化为另一种量子算法——量子振幅估计的性能发展。这是使用噪声模型完成的,该模型估计算法单次运行的错误概率。其参数与模型假设下的量子体积有关。将相同的噪声模型应用于量子振幅估计,可以将错误率与每秒生成的 Fisher 信息联系起来,这是量子振幅估计作为一种数值积分技术的主要性能指标。这为其积分能力提供了预测,并表明,如果没有重大突破,作为一种数值积分技术的量子振幅估计在不久的将来不会比传统替代方案更具优势。
门用于改变量子比特状态的性质。门有很多种;有些作用于一个量子比特,有些作用于多个量子比特。也许最基本的门是三个泡利门,它们由泡利矩阵形成。
量子信息挑战研究所 (CIQC) 是美国国家科学基金会根据《国家量子倡议法案》 (NQI) 建立的五个量子飞跃挑战研究所 (QLCI) 之一。按照 NQI 的设想,CIQC 是一个学术机构,以研究型大学网络为基础。我们开展量子信息科学和工程方面的前沿研究,旨在推动量子计算机科学的发展,利用量子信息科学理解自然现象,开发量子信息科学的新平台和应用。CIQC 支持本科生、研究生、博士后研究员和教职研究员组成的社区。我们创建了开放论坛,例如校园级聚会、科学研讨会、研究生学校、理论量子计算机科学在线研讨会以及为期数周的计算机科学和数学研究驻留计划。我们的社区和我们赞助的活动面向整个教育和研究界,不分国籍。反过来,这些活动也吸引了一些最优秀的科学家,包括正在接受培训的科学家和成熟的科学家,来到我们的研究所和我们所在的大学。
大萧条和两次世界大战的结合激发了政府对解决社会、经济和军事问题的积极兴趣。罗斯福总统成立了科学研究与发展办公室 (OSRD),以支持美国在战争中的努力。OSRD 主任 Vannevar Bush 向罗斯福总统写了一份题为“科学:无尽的前沿”的报告,认为“基础研究是技术进步的领跑者”。布什的报告以及约翰·R·斯蒂尔曼向杜鲁门总统提交的报告“科学与公共政策:一项国家计划”帮助建立了 1950 年的国家科学基金会 (NSF)。正如物理学家 William A. Blanpied 所指出的那样,“NSF 从一开始就与众不同,因为它强调政府政策支持科学活动,而不是科学为政府政策服务。”国会于 1976 年在总统行政办公室设立科学技术政策办公室,认识到总统需要接受“有关需要政府最高层关注的问题的科学、工程和技术方面的建议”。