Richard Feynman [1]在他的演讲中,在1981年在MIT上举行的计算物理学的第一次讲话中,观察到,以有效的方式对经典概率计算机进行模拟的一般量子进化似乎是不可能的。 他指出,与自然进化相比,量子进化的任何经典模拟似乎都涉及时间放缓,因为以经典术语描述不断发展的量子状态所需的信息量会呈指数呈指数增长。 但是,Feynman并没有将这一事实视为障碍,而是将其视为机会。 他认为,如果它需要太多的计算才能确定复杂的多粒子间间实验中会发生什么,那么建立这样的实验并测量结果的行为就是进行复杂的计算。 的确,所有量子多部分干涉仪都是量子组合,并且一些有趣的计算问题可能基于估计这些干扰器中的内相移。 这种方法导致了量子算法的统一图,并已由Cleve等人详细讨论。 [2]。 让我们从量子间间的教科书示例开始,即双缝实验,在更现代的版本中,它可以按照手机干涉法进行改写(见图,请参见图。 1)。Richard Feynman [1]在他的演讲中,在1981年在MIT上举行的计算物理学的第一次讲话中,观察到,以有效的方式对经典概率计算机进行模拟的一般量子进化似乎是不可能的。他指出,与自然进化相比,量子进化的任何经典模拟似乎都涉及时间放缓,因为以经典术语描述不断发展的量子状态所需的信息量会呈指数呈指数增长。但是,Feynman并没有将这一事实视为障碍,而是将其视为机会。他认为,如果它需要太多的计算才能确定复杂的多粒子间间实验中会发生什么,那么建立这样的实验并测量结果的行为就是进行复杂的计算。的确,所有量子多部分干涉仪都是量子组合,并且一些有趣的计算问题可能基于估计这些干扰器中的内相移。这种方法导致了量子算法的统一图,并已由Cleve等人详细讨论。[2]。让我们从量子间间的教科书示例开始,即双缝实验,在更现代的版本中,它可以按照手机干涉法进行改写(见图1)。
• Alice 想要将消息 M 传输给 Bob • Alice 有一个公钥𝐴𝑝𝑢。 Bob 拥有私钥 𝐵 𝑝𝑟 • Alice 将其乘以 Bob 的私钥,得到 n = Mx 𝐵 𝑝𝑟 • Alice 将其乘以自己的公钥:得到 𝐴 𝑝𝑢 x(Mx𝐵 𝑝𝑟 ) • Eve 可以除以 𝐴 𝑝𝑢 ,但由于不知道 𝐵 𝑝𝑟 ,所以无法得出 M • 另一方面,Bob 也知道 𝐵 𝑝𝑟 ,因此执行两次除法,得到 M
Maya 通过向 Bharat 发送密钥来启动消息。密钥是一串沿一个方向传播的光子。每个光子代表一个数据位——0 或 1。但是,除了线性传播之外,这些光子还以某种方式振荡或振动。因此,在发送者 Maya 启动消息之前,光子会穿过偏振器。偏振器是一种过滤器,它使某些光子以相同的振动通过,而让其他光子以改变的振动状态通过。偏振状态可以是垂直(1 位)、水平(0 位)、45 度右(1 位)或 45 度左(0 位)。传输具有代表单个位(0 或 1)的两种偏振中的一种,无论她使用哪种方案。光子现在通过光纤从偏振器向接收器 Bharat 传播。这个过程
与仅传递信息的传统信道相比,量子信道受到叠加和纠缠等量子力学原理的影响。这些信道不仅携带信息,而且它们传递信息的方式可能受到量子噪声和环境相互作用的影响,因此研究它们的性质和行为既令人着迷,又对量子技术的发展至关重要。在探索量子信道时,我们必须考虑幺正演化的概念——量子态在封闭系统中以可逆方式演化——以及这种理想在噪声不可避免的开放系统中受到的挑战。这些概念的影响是深远的,不仅对我们的理论理解如此,而且对量子计算和安全通信的实际应用也是如此。
Kobayashi Kazuyoshi,Kazutoshi教授综合电路,电力电子和量子计算机Kobayashi Kazuyoshi,Kazutoshi教授综合电路,电力电子和量子计算机