一系列卡宾-金-乙炔配合物 [(BiCAAC)AuCC] n C 6 H 5 − n ( n = 1,Au1;n = 2,Au2;n = 3,Au3;BiCAAC = 双环(烷基)(氨基)卡宾) 已被高产率合成。化合物 Au1–Au3 呈现深蓝色至蓝绿色磷光,在所有介质中量子产率高达 43%。金配合物 Au1–Au3 中 (BiCAAC)Au 部分的增加会增加紫外可见光谱中的消光系数和更强的振子强度系数,理论计算支持这一点。发光辐射速率随着 (BiCAAC)Au 部分的增加而降低。时间相关密度泛函理论研究支持磷光的电荷转移性质,这是因为单重态(S 1 )和三重态(T 1 )之间的能隙很大(0.5–0.6 eV)。瞬态发光研究揭示了非结构化紫外瞬时荧光和 428 nm 振动分辨长寿命磷光的存在。有机发光二极管 (OLED) 采用物理气相沉积法制成,以 2,8-双(二苯基磷酰基)二苯并[b,d]呋喃 (PPF) 作为主体材料,与复合物 Au1 反应。在 405 nm 处观察到近紫外电致发光,器件效率为 1%,同时在 10 尼特的实际亮度下 OLED 器件寿命 LT 50 长达 20 分钟,表明一类非常有前景的材料可用于开发稳定的紫外 OLED。
摘要 - 以红毛丹和香兰叶为碳源,通过水热和微波处理合成碳量子点 (CQDs),这是一种简便且环保的方法。本研究介绍了合成方法对 CQDs 光学和物理性质的影响,以及通过 Cu 2+ 检测 CQDs 的传感活性。通过分析发现,CQDs 的带隙能量范围为 2.52 至 3.51 eV。CQDs 溶液表现出明显的荧光特性,在波长约为 405 nm 的紫外 (UV) 光照射下可以检测到明亮的青色荧光。使用水热法从香兰叶和红毛丹叶合成的 CQDs 的量子产率 (QY) 值分别约为 2.46% 和 2.70%。 FT-IR 分析记录了 CQDs 表面现有的功能团为羟基和羰基,可作为检测 Cu2+ 的吸附位点。此外,这项研究表明,使用热液法从香兰叶和红毛丹叶中发射的 CQDs 在检测 Cu 2+ 的存在时表现出最佳的关闭行为,最低检测限 (LoD) 低至 123 µM。关键词——碳量子点 (CQDs);叶子;热液;微波;铜离子。提交:2021 年 1 月 19 日更正:2021 年 4 月 4 日接受:2021 年 4 月 25 日 Doi:http://dx.doi.org/10.14710/wastech.9.1.1-10 [如何引用本文:Kasmiarno, LD, Fikarda, A., Gunawan, RK, Isnaeni, Supandi, Sambudi, NS。 (2021)。碳量子点(CQds)来自
准确描述多体相互作用仍然是理论和计算化学领域的挑战,但它是理解和优化与量子信息和能量转换等应用相关的材料性能的关键。在这里,我将描述我在两种不同材料中模拟多体相互作用的工作。首先,我将讨论量子点 (QD),这是一种半导体纳米晶体,具有高度可调的光电特性,这些特性敏感地取决于电子激发和声子 (即晶格振动) 之间的相互作用。我们开发并验证了一种描述激子-声子耦合的方法,该方法具有原子细节,与实验相关的量子点中有数百个原子。我们模拟了能量耗散,发现它发生在超快的时间尺度上,这与实验结果一致,但与长期以来的理论预期相反。此外,我们确定了用于调整这些时间尺度的 QD 手柄,以减少热损失并提高量子产率。接下来,我将重点介绍笼状化学结构,笼状化学结构由于其强大的声子-声子相互作用(即非谐性)而有望用于热电应用。我们开发并应用基于量子嵌入的振动动态平均场理论 (VDMFT) 来模拟笼状物中的非谐性和热传输。我们表明 VDMFT 既高效又准确,描述了笼状物独特振动动力学的基础多声子散射过程,但在常见的微扰理论方法中却被忽略了。借助本次演讲中描述的工具所具备的预测能力,我们可以更好地解锁可转移的洞察力,以增强材料设计。
一般范围:单光子源是量子通信和计算框架中的关键组成部分。特别是,它们是由量子物理定律本质上保护的秘密解密密钥所必需的。我们的小组开发了嵌入在自下而上的核心壳ZnSE纳米线(NWS)中的CDSE量子点(QD)的生长和光学研究,所有这些都由分子束外延(MBE)生长。我们已经表明,这些QD能够发射到室温至室温的单个光子。此外,它们在蓝绿色光谱范围内的排放尤其适合自由空间和水下通信。主题:主实习旨在控制这些CDSE/ZNSE NW-QD的增长,以提高其作为单光子发射器的效率。这意味着:(i)优化核壳型纳米线异质结构的生长,以增强发射量子产率,(ii)获得对QD形状和纯度的控制以允许纠缠光子的发射。实习结合了MBE的生长,结构表征(扫描电子显微镜)以及光学表征。它提供了探索广泛的基本物理现象(增长机制,光学特性等)在纳米尺度上,同时为量子通信和量子信息处理领域必不可少的设备的开发做出了贡献。环境与合作:我们的小组“纳米物理学和半导体”是一个联合CEA/CNRS团队,实习生将与我们小组的CEA-IRIG和CNRS-NEEL的研究人员进行紧密互动。必需的技能:纳米科学,材料科学,半导体物理学,对实验和合作工作感兴趣。开始日期:2024年2月或2024年3月:4-5个月实验室:CEA-GRENOBLE/PHELIQS/NPSC:www.pheliqs.fr/pages/npsc/presentation.aspx Contact.aspx联系人:通过电子邮件发送您的申请(包括CV)至:
通过在所有位点(A、B 和 X)进行阴离子/阳离子工程可调节性质,使该类材料对下一代器件具有吸引力。据报道,VOP 有许多不同的离子组合,其中 i)A 位主要含有 Cs + 、Rb + 、K + 或铵有机阳离子,ii)B 位含有 Sn 4 + 、Ti 4 + 、Zr 4 + 、Te 4 + 、Sb 4 + 、Pt 4 + 、Ru 4 + 或 Pd 4 + 以及 iii) X 位含有 Cl − 、Br − 或 I −。[11,15–19] 值得注意的是,只有 Pt 4 + 和 Pd 4 + 样品在水介质中是稳定的。[11,12,15] 但是,可以利用在这些化合物中采用的策略来调节所需的性质。在钛基钙钛矿 Cs 2 TiI x Br 6-x 中,通过将 x 值从 0 变为 6 来系统地调整混合卤化物材料,可使光学带隙从 1.38 eV 变为 1.78 eV。[18] 类似地,在钯基纳米粒子钙钛矿中,随着卤素从溴化物变为碘化物,带隙变窄,这些材料已成功用于光催化。[20] 在我们最近的一项工作中,提出了阴离子交换法来创建核壳异质结构,其中核和壳具有不同的卤素。[15] 这些结构已被证明可以增强光生载流子分离。同样,Cs 2 Sn 1 − x Te x I 6 中的 Sn/Te 比已被证明会影响电导率、载流子迁移率和载流子浓度。 [21] Cs 2 SbBr 6 中混合价数(III 和 V)的存在为调整光电性能提供了另一个机会。[22] 用 Te 4 + 取代 Cs 2 ZrCl 6 已显示出光致发光量子产率的显著提高。[23,24] 类似地,据报道混合 Sn/Pt 空位有序钙钛矿的发射性能有所增强。[25] 在大多数已报道的钙钛矿中,
化合物具有良好的基础,因为它们具有多种优势。它们表现出可调的发射特性;因此,可以针对特定C应用定制发射光的颜色和强度。11 - 13这种可调节性是创建可以补充人类视觉敏感性的磷光器的关键特征,从而带来最佳的照明和显示质量。ca 3(vo 4)2(一种钒酸盐)具有一种结构结构,当用某些稀土离子掺杂时,可以定制以在可见光谱中发出光。14此功能使CA 3(VO 4)2成为需要绿色排放的引人注目的选择,例如在W-LED和显示技术中。15基于Ca 3(vo 4)2的磷光体的可调节性能源于其可调节的特性,从而能够以受控和有效的方式产生材料。发射白光二极管(LED)的发展在很大程度上取决于绿色发射磷。在发光活化剂中,TB 3+离子以其出色的量子产率,辐射纯度和稳定性而闻名。16,17用于研究绿色发光,最近将TB 3+离子添加到宿主材料中,例如BioCl和Sral 2 O 4。 18,19 4f 8 - 4f 7 5d 1转换负责TB 3+离子在(220-300)NM区域中显示的广泛激发属性。 令人惊讶的是,在此激发范围内还吸收了孤立的VO 4 3-部分,可能用作TB 3+离子敏化剂。 kuz'Icheva等。 在TM掺杂的Ca 3(vo 4)2中证明了光谱发光特性。 20 Voronina等。16,17用于研究绿色发光,最近将TB 3+离子添加到宿主材料中,例如BioCl和Sral 2 O 4。18,19 4f 8 - 4f 7 5d 1转换负责TB 3+离子在(220-300)NM区域中显示的广泛激发属性。令人惊讶的是,在此激发范围内还吸收了孤立的VO 4 3-部分,可能用作TB 3+离子敏化剂。kuz'Icheva等。在TM掺杂的Ca 3(vo 4)2中证明了光谱发光特性。20 Voronina等。描述Mn掺杂的Ca 3(vo 4)2,21
摘要:可再生能源大多是间歇性的,且地理分布不均匀;因此,对开发新的储能技术的需求很高。能够吸收光、将其储存为化学能并在需要时将其释放为热能的分子被称为分子太阳能热能存储 (MOST) 或太阳能热燃料 (STF)。此类分子为太阳能存储应用提供了一种有前途的解决方案。人们已经研究了不同的分子系统用于 MOST 应用,例如降冰片二烯、偶氮苯、芪、钌衍生物、蒽和二氢蓝。多环应变分子降冰片二烯 (NBD) 可光转化为四环烷 (QC),它具有高能量存储密度和长期储存能量的潜力,因此备受关注。未取代的降冰片二烯在这方面存在一些局限性,例如太阳光谱匹配性差和量子产率低。在过去十年中,我们的团队开发并测试了具有改进特性的新型 NBD 系统。此外,我们还在实验室规模的太阳能利用、储存和释放测试设备中展示了它们的功能。本报告描述了关于如何设计 NBD/QC 系统关键特性(光化学、能量储存、热释放、稳定性和合成)的最有影响力的最新发现,以及用于太阳能捕获和热释放的测试设备示例。虽然众所周知,引入供体 - 受体基团可以实现与太阳光谱更匹配的红移吸收,但我们设法引入了分子量非常低的供体和受体基团,从而实现了前所未有的太阳光谱匹配和高能量密度。其中一些系统中的战略性空间位阻显著增加了光异构体 QC 的存储时间,而二聚体系统具有独立的能量壁垒,可改善太阳光谱匹配、延长存储时间和提高能量密度。这些发现提供了一系列可能的化学改性方法,可用于调整 NBD/QC 系统的属性并使其适用于所需的应用,这对于任何想要接受设计高效 MOST 系统挑战的人都很有用。已经建造了几种测试设备,例如,一种混合 MOST 设备,它可以同时存储太阳能和加热水。此外,我们还开发了一种用于监测催化 QC 到 NBD 转化的设备,从而可以量化显着的宏观热量产生。最后,我们测试了不同配方的聚合物复合材料,这些复合材料可以在白天吸收光线并在夜间将能量释放为热量,以备将来用于窗户涂层应用。这些实验室规模的实现具有形成性,有助于推动该领域向 MOST 系统的实际应用迈进。
光动力疗法(PDT)已成为实体瘤和非综合疾病的非侵入性和选择性治疗方案的突出性。然而,诸如光渗透到组织的浅渗透和光敏机(PS)的较差的局限性阻碍了其效率。为了应对这些挑战,研究人员正在探索基于纳米技术的递送工具和基于细胞的方法,以改善PS分布,靶向积累和受控药物释放。本期特刊展示了肿瘤学和非综合PDT药物输送系统的进步。本社论旨在概述本期《特刊》中发表的八篇研究文章和七篇评论论文。obaid及其同事将他们的研究重点放在改善基于OSMIUM(II)的光敏剂(ML18J03)的性能上,该光敏剂(ML18J03)被配制为DSPE-MPEG2000胶束。这种配方不仅改善了光敏剂的发光,而且还提高了其肿瘤选择性。通过将光敏剂封装在胶束中,搜索者能够增强其在肿瘤组织中的积累并达到更高水平的选择性,从而解决了光敏剂的低发光量子产率所带来的挑战[1]。组合疗法一直在引起人们的注意,以增加癌症治疗的特征结果。在这种情况下,Duchi和合作者探索了角蛋白纳米粒子中氯素-E6(CE6)和紫杉醇(PTX)的共囊化,以治疗骨肉瘤(OS)。这种组合显示出抑制肿瘤细胞生长的有希望的结果。通过将CE6和PTX共同交付,研究人员观察到OS的原位模型中的协同作用,与单独使用任何一种治疗相比,肿瘤大小显着降低了[2]。Muragaki及其同事分析了Talapor Fium介导的PDT的效率,作为复发性胶质母细胞瘤(GMB)的治疗方法。对70例使用PDT手术和38例单独手术的患者进行了回顾性分析。结果表明,与对照组相比,PDT组的中值无进展生存期更长。第二次手术后的中位总生存期在PDT组中也更长。该分析进一步表明,不管发生前病理学,PDT的有效性都是一致的,这表明复发性GBM患者的潜在生存益处[3]。在同一主题上,Tsung Yang及其同事致力于开发用于治疗GMB的新治疗选择。作者研究了使用光化学间杀菌剂将治疗药物释放到GBM细胞中使用光激活的光敏剂。该研究采用了依托泊苷(ETOP)和原磷脂IX(PPIX),并被载入聚胺树状聚合物纳米球中。与游离PPIX相比,该配方显示出增强的细胞摄取,与单独使用ETOP和PPIX治疗相比,光照射会增加协同作用,氧气应激和凋亡[4]。这些纳米载体被设计为靶向过表达表皮生长的细胞为了应对癌症治疗中精确药物定位的挑战,Nonell和同事的研究致力于开发靶向的化学量 - 纳米载体。
