'_ '~海上(码头)船舶故障,脆性断裂的概率成为焦点。与船舶故障相关的数据具有很好的相关性,因此,从激发这些研究的研究中可以学到很多东西。非船舶故障数据不存在类似的相关性,因此进行此项调查是为了补充船舶故障的研究。总共研究了 64 个结构故障以及天然气输送管道故障。这些故障发生在铆钉和焊接结构中,例如油箱桥梁、压力容器、烟囱、PM 库存、电力铲子,以及 M 天然气输送管线。结果表明,脆性破坏的历史至少可以追溯到 1879 年。结论是:(1)非船舶结构中的脆性破坏与船舶中的脆性破坏是相同的现象;(2)多种类型的船舶结构都会发生脆性破坏;(3)脆性断裂可以穿过铆钉接头;(4)没有证据表明随着焊接的出现,脆性破坏的发生率是降低还是增加;(5)与其他因素一起,热应力可能很重要;(6)残余应力不是脆性破坏的主要因素,但这种应力与其他因素一起,会引发表面破坏;(7)冶金变量的影响很重要; (S) 冷成型可提高脆性破坏的敏感性,但由于数据缺乏,其作用无法评估;(9) 在有数据的情况下,板的冲击强度一般低于破坏温度;(10) 在大多数情况下,非船舶脆性破坏的断裂起源于纤维制造缺陷,少数断裂起源于设计缺陷;(11) 似乎在所有情况下,断裂都起源于几何连续面; (12) 没有证据表明这些失效结构能显示各种焊接工艺对脆性断裂敏感性的影响;(13) 除焊接质量特别差的情况外,焊接焊缝没有断裂的趋势;(14) 绝大多数非船舶脆性断裂似乎发生在完全静态的条件下;(1.5) 结构的 AGC 似乎与脆性断裂无关;(10) 大多数工程规范允许使用已知特别容易发生脆性断裂的钢材。同时,除一个规范外,所有规范都将应力水平保持在极保守的值;(17) 最后,证明了脆性断裂是多种因素共同作用的结果。船。我没有任何一种易加工的材料能够完全防止其断裂,而且目前也没有已知的试验能够根据小试样的行为准确预测给定钢材在可能发生结构脆性破坏的情况下的性能,因此,精心的设计、材料的选择和良好的工艺对于防止结构脆性破坏至关重要。
电线定向能量沉积(DED),也称为电线 - 弧形添加剂制造(WAAM),是一种金属3D打印技术,以其高效率,成本效益,构建量表的灵活性以及对建筑行业的适用性而闻名。但是,仍然缺乏有关WAAM元素结构性表现的基本数据,尤其是关于其疲劳行为的基本数据。因此,已经进行了对WAAM钢板疲劳行为的全面实验研究,并在此报告。在几何,机械和微观结构表征之后,在单轴高周期疲劳载荷下测试了一系列WAAM优惠券。已经进行了涵盖各种应力范围和应力比(r = 0.1、0.2、0.3和0.4)的正式和加工息票的75次疲劳测试。数值模拟也研究了由其表面起伏引起的局部应力浓度。使用恒定寿命图(CLD)和S -n(应激寿命)di agrams分析疲劳测试结果,该结果基于标称和局部应力。CLDS表明,未建造的WAAM钢的疲劳强度对不同的应力比相对不敏感。S -n图显示,相对于机械加工材料,在疲劳耐力限制的疲劳耐力极限中,表面起伏的降低约为35%,在同一负载水平下疲劳寿命减少了约60%。还为WAAM钢提出了基于标称应力的初步压力和基于局部应力的S-N曲线。表明,AS建造和加工的WAAM优惠券分别表现出与常规钢对接焊缝和S355结构钢板的相似疲劳行为。
一艘船的建造使用寿命为20至30年。船舶退役是结束船舶运行的行为。拆解是拆除退役船舶的行为。拆除后的钢材可以作为废料出售或用于其他用途。在此背景下,该项工作旨在评估通过 MAG 焊接海军废料板材的接头。 X 射线荧光 (XRF) 显示所收到的材料符合碳钢 ASTM A131 标准。焊接后焊接接头组织为熔合区内的针状铁素体、晶界铁素体、魏氏体和马氏体;热影响区组织为铁素体、多边形铁素体、粒状贝氏体;以及母材中含有铁素体的珠光体。这些区域的硬度与其组成相一致。所得结果符合预期,证实了采用 MAG 工艺焊接海军废料并在新舰船上重复使用的可行性。
摘要 — 随着工业 4.0 的到来,数据科学和可解释人工智能 (XAI) 在最近的文献中引起了相当大的兴趣。然而,就计算机编码和必要的数学工具而言,进入 XAI 的门槛确实很高。对于钢板故障诊断,这项工作报告了一种将基于 XAI 的见解纳入数据科学开发高精度分类器过程的方法。使用合成少数过采样技术 (SMOTE) 和中心点概念,从 XAI 工具中获得见解。已经收获了 Ceteris Peribus 配置文件、部分依赖性和故障配置文件。此外,还从优化的随机森林和关联规则挖掘中提取了 IF-THEN 规则形式的见解。将所有见解整合到一个集成分类器中,已实现 94% 的 10 倍交叉验证性能。总而言之,这项工作做出了三个主要贡献,即::基于利用 medoids 和 SMOTE 的方法,收集见解并纳入模型开发过程。其次,这些见解本身就是贡献,因为它们使钢铁制造业的人类专家受益,第三,已经开发出高精度故障诊断分类器。
疲劳裂纹是钢结构的常见缺陷,在不同的负载和各种环境因素的长期影响之后[1]。如果没有及时有效治疗,它最终可能导致结构性疲劳失败。维修和加固技术的出现提供了一种解决此问题的新方法。与更换损坏的结构部件相比,维修和加固技术在时间和成本方面都具有很大的优势[2,3]。在裂纹尖端上使用裂纹停止孔是最常用的临时控制技术之一。在过去的几十年中,许多学者研究了裂纹停止孔的工程应用[4,5]。结果表明,裂纹停止孔的形状,尺寸和姿势的合理设计可以有效地降低裂纹的生长速度并增加残留疲劳寿命。但是,当在疲劳裂纹尖端处理裂纹停止孔时,原始结构的机械强度被削弱,并创建了新的容易疲劳的区域。更重要的是,当裂纹从裂纹停止的边缘启动时,由于存在停止孔的存在,新裂纹的膨胀速率不会改变[6]。作为一种复合材料,纤维增强聚合物(FRP)材料具有高强度重量比,良好的耐腐蚀性和疲劳性能,并且几乎可以将其分为几乎所有所需的形状。在过去的几年中,关于结构缺陷大小的影响[7,8],粘合剂的特性[9,10]和FRP键合法
・・・1222二级相对热滚动高拉伸力强度钢板的裂纹传播行为的影响(研究热滚动的高卷曲高强度钢板的主要法兰 - 3)352 y.takahashi
本工作采用了一种创新技术——电弧增材制造 (WAAM),这是一种定向能量沉积技术,用于裂纹钢部件的疲劳强化。在高周疲劳载荷条件下测试了不同的带有中心裂纹的钢板,包括参考板、用 WAAM 修复的具有沉积轮廓的钢板以及用 WAAM 修复并随后进行加工以降低应力集中系数的钢板。进行了相应的有限元模拟,以更好地理解 WAAM 修复的机理。参考板上现有的中心裂纹在 94 万次循环后扩展并导致断裂,而两块 WAAM 修复板中的中心裂纹并未扩展,这是由于净横截面积增加以及沉积过程引起的压应力。然而,在第二块钢板中,由于局部应力集中,在 WAAM 轮廓根部出现了新的裂纹,疲劳寿命达到了 220 万次循环(是参考板的 2.3 倍)。另一方面,第三块钢板由于加工轮廓光滑,经受了 900 多万次疲劳循环,没有出现明显的退化。这项研究的结果表明,WAAM 修复技术在解决钢结构疲劳损伤方面具有巨大潜力。
高强度钢,许多规范都涵盖了可用于船舶结构的高强度钢的缺口韧性。MIL-S-16216 规范涵盖了 HY-80 钢的缺口韧性要求,HY-80 钢是一种低碳镍铬钼钢。淬火和回火状态下的钢的夏比 V 型缺口冲击试验值的最低要求是厚度为 2 英寸或以下的钢板为 60 英尺磅,厚度为 2 英寸以上的钢板为 30 英尺磅。
符合 WL 1.3964-1 的热轧钢板经过扩展的制造商批准,钢板厚度:最大至 21 毫米,适用于耐压船体区域。生产路线:在英国谢菲尔德的SMACC熔炼。在位于德国锡根的 VDM 进行滚动,最后在位于德国阿尔特纳的 VDM 完成。或者在瑞典代格福什 (Degerfors) 进行轧制和精加工。 Vereinigte Edelstahlwerke AG A-8680 Mürzzuschlag 奥地利