摘要:热跃层热能存储系统在提高能源密集型行业的能源效率方面起着至关重要的作用。在可用的技术中,由于使用具有成本效益的材料的能力,空气基床系统很有希望。最近,研究中最有趣的填充材料之一是钢铁矿石,这是钢铁行业的副产品。钢炉炉提供负担能力,可用性充足而没有冲突的使用,在高达1000℃的温度下稳定性,与传热液的兼容性以及无毒性。先前的研究表明了有利的嗜热和机械性能。尽管如此,当在许多充电和放电周期中暴露于机械和热应力时,经常被忽视的方面是炉渣颗粒的耐力。在整个热循环过程中,储罐内的炉渣在升高温度下经历了大量载荷,经历了热膨胀和收缩。这种现象会导致单个颗粒的恶化和对储罐结构的潜在损害。但是,由于在相关规模上进行热循环所需的相当长的时间,评估这些系统的扩展性能是具有挑战性的。为了解决这个问题,本文介绍了专门设计的快速测试设备,为15年的运行时间提供了实尺度系统的相应测试结果。
Asphaltech 生产一系列沥青产品,这些产品包含再生材料,例如再生沥青 (RAP)、钢渣、橡胶和塑料。这些产品用于维多利亚州的许多项目,从当地道路重铺到主要基础设施的沥青,包括 Mernda 铁路延伸和各种平交道口拆除项目。Asphaltech 的产品包括 85% 再生钢渣骨料沥青混合料;100% 再生冷乳化沥青和一套由二手澳大利亚卡车轮胎制成的沥青碎橡胶沥青产品。
在监管机构与行业之间合作开发的英国的钢渣质量协议促进了冶金中的循环经济。它将废物钢渣转变为有价值的建筑资源,在满足特定标准时将其免于废物控制,包括使用适当的材料,遵守欧洲标准以及遵守最佳实践。该计划使环境负责的骨料生产用于各种建筑需求,简化资源使用并最大程度地减少废物。通过要求严格的质量控制和文档,它促进了可持续建筑和资源效率。
钢渣是炼钢过程的副产品。由于钢渣生成率高,且其中含有大量有毒而有价值的金属,如钒,因此从该产品中回收钒是十分必要的。在本研究中,将炼钢转炉渣(含约1.96wt.% V 2 O 5 )磨碎至平均粒度为85µm,采用乙酸浸出法回收钒。在固定乙酸浓度(1摩尔)和固液重量比(200毫升中1克钢渣)的情况下,研究了时间(0至120分钟范围内)和温度(0至80⁰C范围内)对浸出过程的影响。结果表明,增加时间和降低温度(活化能等于-11.4kJ/mol)可提高钒的浸出效率。在 0 ⁰ C 和 90 分钟时达到最大浸出效率。动力学研究表明,通过固体层的热量扩散是钒在乙酸中溶解的控制步骤。此外,热导率 (ka) 随温度升高而降低 (ka=21877.6/T3),因此热量以较慢的速度从反应区转移到颗粒表面。
摘要:基于直流再生器的带热能存储的太阳能发电塔具有产生具有成本效益的基载电力的潜力。一种可以进一步节约成本但尚未得到广泛研究的库存选择是电弧炉炉渣。这种用途不仅具有经济优势,而且有利于环境保护,因为这种类型的炉渣大部分目前不再使用,而是被填埋处理。在已完成的欧盟项目 REslag 中,研究了炉渣的各种后续用途,包括这里介绍的将烧结炉渣卵石用作太阳能发电塔中再生器的库存的可能性,其中空气作为传热流体。本文介绍了该项目不同阶段的主要结果,重点介绍了尚未发表的研究。除了对不同设计以及“轴向流动—站立”储存铅概念的部分负载和非设计行为进行热模拟的结果外,这些结果主要是对储存分配器设计的流体力学计算和对炉渣的材料研究的结果。总之,可以说烧结炉渣球在热、机械和化学方面与传统库存材料具有竞争力,这些研究的结果证实了基于炉渣的储存的原理可行性。详细阐述了定义的储存铅概念,并通过模拟和实验确认了设计的性能。
•大规模储能解决方案 - 除锂离子电池以外的其他解决方案似乎不适合像印度这样的国家,其原因包括我们没有基本原材料的事实 - 液态金属流量电池(例如,气流电池)是另一个有吸引力的选择,必须探索。•电网基础设施 - 当前的网格将无法迎合间歇性和分布的电力输入;智能网格的概念非常强大,可以满足两种供应方面的挑战(可再生能源)以及需求管理(动态定价以照顾其峰值负载)。•运输(电动流动性,既适用于人和货物)。•采矿,矿物加工和提取冶金工业(目前完全取决于化石燃料,不仅是作为热源的化石燃料,而且还依赖于将金属氧化物转化为金属的还原剂)。•废物副产品的回收,包括市政废物,尾矿和冶炼厂,包括钢渣,红泥和花盆衬里,电子废物和医院废物。•过渡所需的原材料的供应链 - 来自其他地区,城市采矿,深海开采和空间采矿的采购策略。•寻找钢和水泥生产的替代技术选择,以减少环境足迹 - 目前,这两种材料将在可预见的未来继续保持印度经济的骨干,并且在未来十年中,消费可能会增加数量级。•废水处理和回收。•包括淡化的水净化技术
摘要钢铁行业产生的各种废物,该矿石一直是最被回收和回收的对象。Alto-Forno炉渣在回收中得到了很好的定义,但是,动作的矿渣反过来已经发现很难被正确享受,尤其是在其巨大的基本性方面。根据巴西钢铁学院的数据,2011年至2020年之间在巴西的钢铁生产约为3.37亿吨。这平均产生了约4000万吨的Scum Scoria。在当前工作中,提出了在构造中使用范围范围的可行性。由于其化学不稳定性和可降解的物理结构,钢的Scoria被认为是钢制造的残留物和该过程的副产品,因此不建议直接在建造中进行直接使用,因为其降解,膨胀性和低电阻会损害最终产品的稳定性。为此,开发了浮渣治疗分析,其中进行了氢氧化和碳化过程。测试以评估捕获烟雾2的方法,并将氧化物(CAO,MGO)稳定到aciaria的浮渣中,将它们变成碳酸盐,改善其化学和物理稳定性,从而实现这种废物的再利用和可回收性。关键字:钢渣;炉渣的碳酸化;绑架碳;钢废物的回收;生态结构。钢铁制造商简介钢生产过程中产生的炉渣大部分被丢弃。该矿渣主要由氧化钙(CAO)组成,当暴露于环境时,在这种形成的氢氧化钙中与水分反应,CA(OH)2。像CA(OH)2一样,耐药性比CAO本身较低,并且在形成时会导致炉渣膨胀,这种化学现象会导致机械耐药性下降,并使该材料用于构造。因为他们必须丢弃这些