背景。近20年前提出的负面症状的假设认知模型是概念化精神分裂症谱系障碍(SSD)负面症状的最普遍的心理框架。这项研究的目的是首次全面验证该模型,特别是通过量化负面症状严重程度与所有相关功能失调的信念之间的关系。方法。使用Medline和Psychinfo进行了系统的搜索,并补充了参考列表和Google Scholar的手册评论。符合条件的研究经过同行评审,并了解负面症状之间直接的横截面关联的数据,并且至少对SSD患者的至少一种相关的功能障碍信念。筛选和数据提取由独立审阅者完成。进行随机效应的荟萃分析以z转化的皮尔逊的R相关性的池效应尺寸估计值。还评估了这些关系的主持人,以及负面症状领域和测量工具的子集分析。结果。对负面症状与失败者表现信念之间的关系产生了显着影响(k = 38,n = 2808),r = 0.23(95%CI,0.18 - 0.27),asocial信念(k = 8,n = 578),r = 0.21(95%CI,0.12 - 0.28),n = 0. 55.555555555555555555 55, (95%CI,0.15 - 0.26),愉悦期望低(K = 5,n = 249),r = 0.19(95%CI,0.06 - 0.31),内部化的污名(k = 81,n = 9766),r = 0.17(r = 0.17(95%CI,0.12 – 0.22),但NOT = 46 = 46 = 46 k = 46 k = 46 k = 46 0.08(95%CI,0.13 - 0.27)。结论。这种荟萃分析为负面症状的认知模型提供了支持。鉴定与负面症状相关的特定功能失调的信念对于发展基于精确的认知行为干预措施至关重要。
•会或合理地期望可以防止疾病,病情,伤害或残疾的发作。•将或合理地期望减少或改善疾病,病情,伤害或残疾的身体,精神或发育影响。•将帮助成员在执行日常活动中实现或维持最大的功能能力,并考虑成员的功能能力和适合相同年龄成员的功能能力所有用于家庭使用提供的耐用医疗设备的功能能力,都需要高级确定覆盖范围。在住院或门诊中心提供的设备不可单独偿还。负压伤口疗法必须通过参与耐用的医疗设备供应商获得。描述:真空辅助伤口闭合是一种用于促进慢性伤口愈合的技术。可以用作手术的辅助手术,也可以作为衰弱或非手术候选者的患者的手术替代方法。将带有附着的疏散管的特殊泡沫调味料插入伤口。伤口用粘附的闭合敷料密封。疏散管从伤口导致连接到负压泵的罐。负压从伤口中去除多余的间质液。这会导致水肿减少,从而使伤口床的血流增加。假设增加的血流为伤口提供氧气和养分,从而促进了肉芽组织的形成。适应症:它也将伤口的边缘靠近。
摘要 本研究获得了基于铁电磁 PbFe 1/2 Nb 1/2 O 3 粉末和铁氧体粉末(锌镍铁氧体,NiZnFeO 4 )的多铁性(铁电-铁磁)复合材料(PFN-铁氧体)。陶瓷 PFN-铁氧体复合材料由 90% 粉末 PFN 材料和 10% 粉末 NiZnFeO 4 铁氧体组成。陶瓷粉末采用传统工艺方法合成,采用粉末煅烧,而复合粉末的致密化(烧结)采用两种不同的方法进行:(1)自由烧结法(FS)和(2)放电等离子烧结(SPS)。对复合 PFN-铁氧体样品进行了热测试,包括直流电导率和介电性能。此外,还在室温下测试了复合材料样品的 XRD、SEM、EDS (能量色散谱) 和铁电性能 (磁滞回线)。在工作中,对用两种方法获得的 PFN-铁氧体复合材料样品的测量结果进行了比较。多铁性陶瓷复合材料的 X 射线检查证实了来自复合材料铁电 (PFN) 基质的强衍射峰以及由铁氧体组分引起的弱峰。同时,研究表明不存在其他不良相。这项研究的结果表明,通过两种不同的烧结技术 (自由烧结法和放电等离子烧结技术) 获得的陶瓷复合材料可以成为功能应用的有前途的材料,例如,用于磁场和电场传感器。
5虽然NIR是银行资产方面的相关报酬(储备金和货币市场贷款),但它并未(完全)传递到银行的责任方(存款)。这会降低银行的利率利率,从而降低。6除瑞典里克斯银行(Riksbank)以外的所有上述中央银行都免除了NIR的一小部分储量,以零甚至肯定的利率将其报酬。的货币政策,并以储备计划的分层报酬进行了研究。(2021)。Boutros和Witmer(2020)侧重于豁免对实物现金需求的影响,而Fuhrer等人。(2021)研究银行间豁免阈值的影响。7,例如,积极领土上的政策利率从2%降低到1%,比负面领土的降低效果不同,例如-1%从-1%到-2%。
a 摩洛哥拉巴特国际大学工程与建筑学院 TICLab b 法国巴黎理工学院巴黎电信 LTCI c 美国马里兰州阿德尔菲美国陆军研究实验室
Peter Cook,Peter Cook CSS 研究中心 Tony Wood(主席),格拉坦研究所 Andrew Lenton,CSIRO 气候科学中心 Robin Batterham,墨尔本大学 Nasim Pour,Jacobs' Economics
用于计算超越互补金属氧化物半导体的铁电体。双极晶体管和互补金属氧化物半导体 (CMOS) 晶体管的微缩(即减小尺寸或增加总数 1 )取得了巨大成功,但随着半导体工艺的每一代发展,随着器件接近基本尺寸极限 2 ,微缩变得越来越困难。虽然摩尔微缩定律一直在延续,但工作电压的降低速度要慢得多,因为 Dennard 的微缩方案 3 只持续到 2003 年左右。研究人员目前正在探索其他方法,以继续遵循摩尔定律,使器件具有低工作电压(< 100 mV)和相应的低工作能量(每位 1-10 aJ),同时保持可接受的器件开关延迟(< 0.1 ns)。这推动了一系列替代的、超越 CMOS 的计算途径(例如,基于自旋、极化、应变等的途径)4、5 的研究。铁电体可实现非挥发性和低读/写能量,在存储器(例如铁电随机存取存储器)、逻辑或存储器内逻辑(例如铁电场效应晶体管 (FeFET) 应用 6、7 和负电容场效应晶体管)8、9 中引起了越来越多的关注。尽管引起了人们的关注,但问题在于大多数铁电器件都在高电压 6、7 (> 1 V) 下工作,因此与低功率操作不兼容 5。解决这个问题将标志着向前迈出的重要一步,并可能为铁电材料在超 CMOS 器件的出现中开辟道路。
摘要:提出了一个分析子阈值摇摆(SS)模型,以观察当堆叠的SIO 2-中的FERROCTRIC结构用作无连接双门(JLDG)MOSFET的氧化物膜时,SS的变化。60 mV/dec的SS对于在保持晶体管性能的同时减少功率耗散至关重要。如果使用具有负电容(NC)效应的铁电材料,则可以将SS降低到60 mV/dec以下。使用2D电势分布,SS与从漏极电流和栅极之间的关系得出的SS相吻合。作为分析SS模型得出的结果,发现通过调节硅频道,SIO 2和铁电的厚度,也可以在15 nm通道长度下获得60 mV/dec的SS。,随着SIO 2的厚度的增加,SS根据铁电厚度的变化饱和,并且随着硅通道的厚度减小,几乎是恒定的。
强度有助于确定与相动力学(n、k 和活化能 E a )和伴随生长相关的各种参数。钙钛矿的有效活化能