图 1. 晶圆级基于 LN 的 MWP 信号处理引擎及其构建模块。a 基于 LN 的 MWP 处理引擎示意图,由将模拟电子信号忠实地转换为光域的高速 EO 调制部分和低损耗多用途光子处理部分组成。b 使用紫外步进光刻系统对 4 英寸晶圆级 LN 光子集成电路进行图案化拍摄。c 我们高速 MWP 系统基本构建模块的显微镜图像和关键性能指标,包括固有品质因数 ~ 6 × 10 6 的微谐振器、用于信号编码的低驱动电压和宽带强度和相位调制器、作为积分器的分插环谐振器、作为微分器的非平衡 MZI,以及作为二阶积分器和微分器的级联环和 MZI。 d 设备的假彩色扫描电子显微照片(SEM),分别显示波导的侧壁、微谐振器的耦合区域、波导和多模干涉(MMI)耦合器的横截面图。
合著者:PERUZZO 教授,Alberto(RMIT);JOHNSON 博士,Brett(RMIT);KRASNOKUTSKA 博士,Inna(RMIT);BULLOCK 博士,James(墨尔本大学);MESSALEA 博士,Kibret(RMIT);CHAPMAN 博士,Robert(苏黎世联邦理工学院);TAMBASCO 博士,Jean-Luc(RMIT)
可扩展的光子量子计算架构对光子处理设备提出了严格的要求。对低损耗高速可重构电路和近乎确定性的资源状态生成器的需求是最具挑战性的要求之一。在这里,我们开发了一个基于薄膜铌酸锂的集成光子平台,并将其与基于纳米光子波导中量子点的确定性固态单光子源接口。生成的光子由可编程速度为几千兆赫的低损耗电路处理。我们利用高速电路实现了各种关键的光子量子信息处理功能,包括片上量子干涉、光子解复用和四模通用光子电路的可重编程性。这些结果为可扩展光子量子技术指明了一条有希望的未来道路,即通过以异构方式将集成光子学与固态确定性光子源相结合来实现扩展。
摘要:本文介绍了一种铌酸锂 (LiNbO 3 ) 材料的微加工工艺,用于快速制作医疗器械应用的谐振传感器原型设计。采用激光微加工制造铌酸锂材料样品。使用扫描电子显微镜对表面进行定性目视检查。使用光学表面轮廓仪定量研究表面粗糙度。通过激光微加工可实现 0.526 µ m 的表面粗糙度。在不同工作环境和不同操作模式下检查了激光微加工传感器的性能。该传感器在真空中的品质因数 (Q 因数) 为 646;在空气中的 Q 因数为 222。建模和实验结果之间的良好匹配表明,激光微加工传感器具有用作谐振生物传感器的巨大潜力。
2 加州理工学院物理、数学和天文学分部及量子技术联盟 (AQT),美国加利福尼亚州帕萨迪纳 91125 状态 光子具有许多有利于实现量子技术的特性 [1]:它们存在于环境条件下,通常不受环境噪声的影响,并且在一定程度上可以轻松产生、操纵和检测。由于它们还可以长距离传播而不会造成重大损失,因此单个光子非常适合量子密钥分发,旨在利用量子不确定性来保护远距离各方之间的消息。然而,光子的这些特性也为实现需要单个光子之间确定性相互作用的量子技术带来了挑战,例如用于光子量子信息处理。集成光子学将在实现长距离(例如全球)、中距离(例如城域或房间大小)和短距离(例如芯片间或芯片内)量子网络中发挥关键作用。但是,用于量子技术应用的光子学平台的性能需要比传统应用的要求好得多,并且在某些方面与传统应用的要求有所不同。例如,量子光子学平台需要:(i)超低损耗,以保存脆弱的量子态;(ii)能够精确控制光子的时间和光谱分布;(iii)允许快速、低损耗的光开关路由量子信息;(iv)能够在可见光和电信波长下工作,这两个波长下有许多单光子源和量子存储器工作,并且存在低损耗光纤;(v)具有强非线性,可高效地进行频率上变频和下变频、量子转导和纠缠光子对生成;(vi)允许集成光电探测器和操作电子设备。领先的集成光子平台硅和氮化硅由于缺乏二阶非线性而无法满足这些要求,这限制了它们的功能 [1]。虽然可以通过晶体改性或异质集成来解决这一问题,但仍需观察其中涉及的权衡因素,例如效率和可扩展性。薄膜铌酸锂 (TFLN) 已成为一种有前途的量子光子平台。LN 对光子透明(带隙约为 4 eV),具有强大的电光 (EO) 效应,允许使用微波快速改变光的相位,并且具有较高的二阶光学非线性,可通过铁电畴调制(即周期性极化)进行设计 [2]。重要的是,4 英寸和 6 英寸 TFLN 晶圆最近已实现商业化,这激发了人们对这一令人兴奋的材料平台的兴趣。
据我们所知,这是在 LNOI 平台上首次演示高阶模式通带滤波器。我们的模式滤波器体积小、损耗低、MER 高、功能可扩展,与其他材料平台上报道的器件相比,是一种极具吸引力的选择(详情请参阅支持信息 S5)。此外,我们的器件还可以使用微电子行业开发的成熟的 CMOS 兼容蚀刻工艺来制造,同时保留了基于 LNOI 平台探索高速电光器件和高效光学非线性器件的能力。
! " #$% &'( ) ) * * + %, " -. (# / ) ) # ) + # / ) -。 + ) + # - + %, / + ) & + ) # ! * + ) + * 0 # 1 , ", ( * 2 3 2 3 ) 1 & # 1 * * + * ) ) ) * # ) ) # / , * 0 " $ &'( # ! &' ) + 2%3 243# 5 & 263 273 ) $ ' ) &'# 8 ) * ) * # 9 * !:+%&'; +% % ) # 5 5 # 2<3 + & 5 * ) & * ) 6 1 6 1 $$'# 8 )
液晶作为一种优良的电光材料,具有效率高、工作光谱范围广、可采用多种外场刺激(如电场/磁场、光照、热量)等优点,被广泛应用于光场调制。此外,其他材料如二氧化硅和一些氧化物基超表面、超材料、光子晶体、铌酸锂基非线性晶体等也在光场调制中发挥着独特的优势。关键词: - 光场调制 - 空间结构光束 - 相位 - 振幅 - 偏振 - 空间光调制 - 时域调制 - 频率调制 - 液晶