摘要在50年前,当最初将电线拉测试方法添加到MIL-STD 883中时,在方法D的条件D条件D条件D条件D中,键强度(破坏性键拉测试),测试程序和最小拉力值是基于大多数超声楔键合的拉力测试,仅是几个不同直径的超声楔形铝和金线。将原始数据的最小拉力值推断为覆盖金线和铝线的较宽的电线直径范围。自从这种测试方法发布以来,电子产业已经生产了铜超声楔键,大约15年前采用了大约15年前的铜热球键合,甚至开发了银热球球键的利基市场。该行业还建立了特殊债券,例如安全债券,反向债券也称为“球上的针迹”,甚至是多环线和丝带。在所有时间里,均未对2011年方法中的测试程序和最小拉力值进行审查,以确定它们对这些新材料或新型债券的适当性,即使该行业对所有人都广泛提及了测试方法,因此,默认情况下,该行业接受了所有人的使用。2013年底,我领导了JEDEC的JC14.1小组委员会,包装设备的可靠性测试方法,以更新JEDEC JESD22-B116,Ball Bond剪切剪切测试方法,以扩大其范围,以包括Cu Ball Bonds的剪切。工作组花了三年时间来解决必要的技术问题,以确保修订后的测试方法充分解决了铜球债券的剪切,并提出了最低可接受的剪切值。关键词工作组通过图纸和图像制作了一个大大改进的文档,描绘了黄金和铜键的不同剪切失败模式,并添加了几个信息丰富的附件,以帮助执行测试方法。到2018年,显然,电子行业中最常见的电线拉力测试方法都没有在更新其文档以包括CU线债券方面取得任何重大进展。因此,JC14.1工作组同意与JC-13.7小组委员会(新的电子设备技术)共同合作,以在JC14.1下创建一个新的,拉力拉力测试方法文档,该文档将成为JESD22-B116的伴侣。此新文档将使用2011,条件C和D作为基础,但在其范围上扩展以覆盖超声波楔和热球键的铜线键。新的测试方法将描述Ball Pull测试的过程和针脚拉的测试,该过程通过AEC Q006引用了铜键,使用铜(CU)电线互连对组件的资格要求。测试方法还将提供有关如何对当今使用的几种不同键类型进行拉力测试的指导,包括反向键,多环键和堆叠的模具。工作组计划提出JC14.1将在JESD47中引用的铜线键的最小拉值,这是集成电路的压力测试驱动的资格。After the joint working group completes its work, which is targeted for some time in 2022, JC13.7 would then be able to use the output of this working group to update Method 2011 Conditions C & D. This paper will first briefly discuss the updates made to B116 to cover Cu wire bonds, but mainly focus on the work that has so far been completed by the joint working group, including a general outline of the proposed new document, JESD22-B120, Wire Bond Pull Test 方法 。
[1]《超声波焊接》,第 8 章,载于:《焊接手册》第 9 版第 3 卷,《焊接工艺》,第 2 部分,美国焊接学会,迈阿密,2007 年。[2] AA Fedulova、Yu.A. Ustinov、EP Kotov、VP Shustov 和 ERYavich,《多层印刷电路板技术》,无线电和通信,莫斯科,1990 年(俄罗斯语)。[3] QJ Chen、A. Pagba、D. Reynoso、S. Thomas 和 HJ Toc,《铜线及其他 - 银线是铜的替代品吗?》 , 载于:2010 年第 12 届电子封装技术会议,IEEE,2010 年,第 591-596 页。[4] P. Liu、L. Tong、J. Wang、L. Shi 和 H. Tang,铜线键合技术的挑战与发展,微电子可靠性,2012 年,第 52 卷,第 6 期,第 1092-1098 页。[5] ZW Zhong,使用铜线的引线键合,微电子国际,2009 年,第 26 卷,第 1 期,第 10-16 页。 [6] A. Shah、T. Rockey、H. Xu、I. Qin、W. Jie、O. Yauw 和 B. Chylak,《银线先进引线键合技术》,载于:2015 IEEE 第 17 届电子封装与技术会议 (EPTC),IEEE,2015 年,第 1-8 页。[7] ZW Zhong,《使用铜线或绝缘线的引线键合概述》,《微电子可靠性》,2011 年,第 51 卷,第 1 期,第 4-12 页。
用电迁移应力法研究了具有自对准氧化铜钝化层的等离子刻蚀铜线的可靠性。通过等离子氧化制备氧化钝化层,覆盖整个裸露的铜线,防止环境条件下表面氧化。空洞的形成和生长过程反映了线路断线机理。用光学显微镜监测了由晶界耗尽和晶粒变薄形成的空洞,测量了线路故障时间与线宽和电流密度的关系。增加氧化钝化层会缩短寿命,因为传热和铜扩散不良会加速空洞的形成和生长。窄线比宽线具有更长的寿命,因为晶界较少,可供磁通发散形成空洞
在基础设施方面,我们与 Glaspoort 一起快速发展的光纤覆盖范围现已覆盖荷兰 57% 的地区。在蓬勃发展的光纤市场中,我们积极与市场新进入者合作,以增强我们的网络基础设施。同时,我们淘汰过时的网络和 IT 系统,以节省能源并减少中断。例如,作为铜线关闭计划的一部分,我们最近淘汰了近 300 万条旧铜线。与市政当局达成的成功协议在 2023 年克服获得光纤使用许可等挑战方面发挥了关键作用。确保移动基站的新位置,特别是在城市地区,引发了对可持续性和当地影响的考虑,因此与政府实体的合作至关重要。我们已经对所有移动网络站点进行了现代化改造,并将重点转移到与其他创新者合作开发利用这种基础设施的解决方案。然而,围绕 3.5 GHz 拍卖的不确定性给电信公司带来了挑战,他们需要明确的长期投资。
摘要:本文介绍了一种使用聚合物纳米片作为纳米粘合剂在聚酰亚胺薄膜上制备铜层的技术。我们采用了两种功能性聚合物纳米片:一种用作粘合层,另一种用作模板层以吸附金纳米粒子,而金纳米粒子则用作化学镀的催化剂。光反应性聚合物纳米片用于增加铜层和聚酰亚胺之间的粘附力。此外,阳离子聚合物纳米片用于吸附用于化学镀铜的金催化剂。应用该技术,化学镀铜牢固地附着在聚酰亚胺薄膜上。通过对聚合物纳米片进行光刻,可以制造微米铜线。使用聚合物纳米片作为粘合剂的工艺不需要对聚酰亚胺基板进行表面改性,并且可以制造微尺度铜线而不会排放有害废物。因此,该技术可用于下一代柔性印刷电路板制造。 [doi:10.1295/polymj.PJ2006099] 关键词 柔性印刷电路板 / 聚合物纳米片 / 化学镀铜 / 纳米粘合剂 /
SOLARFLEX ® -X H1Z2Z2-K 1500 V DC,EN 50618,铜线,镀锡,细绞合,符合 DIN VDE 0295 Cl. 5 / IEC 60228 Cl. 5 标准,耐紫外线、臭氧、风化影响、防水。无卤素且阻燃。用于连接太阳能模块。适用于直接埋地。有各种颜色、横截面和卷筒尺寸可供选择
4。了解各种高级应用中数学,物理和化学之间的相互作用和连接。认识到如何使用数学模型以及物理和化学原理来解释和预测不同情况下的现象。5理解并在不同的数字系统(例如二进制,八分,十进制和十六进制)之间进行转换。区分模拟和数字信号并了解其特征。对不同类型的传输介质的了解,例如有线(例如,铜线电缆,光纤)和无线(例如,无线电波,微波炉,卫星)..