单片微电路(或集成电路)。一种微电路,仅由在单个半导体基板上或内部原位形成的元件组成,其中至少一个元件形成在基板内。大多数合格的 QML 供应商都使用铝楔形键合,大概是为了保持 IC 上的键合为单金属。
使用各种悬臂探针针尖多次探测具有薄焊盘铝 (Al)(厚度小于 0.7µ)的 IC 键合焊盘。探针标记由具有各种针尖直径的实验性高强度探针卡创建。将探针针尖的有限元模型与探针标记擦洗长度相匹配,以更学术地了解随着探针参数的变化会发生什么。使用此模型进行模拟将有助于未来进行物理实验困难或成本高昂的情况。实验中的键合焊盘包括各种安森美半导体电路焊盘下 (CUP) 结构,该结构具有 Al 金属化和二氧化硅 (SiO 2 ) 互连,先前已证明与传统 IC 键合焊盘相比具有更强的抗开裂能力。随着未来产品的焊盘缩小,更小的球尺寸和键合接触面积是可取的,但这会加剧探针标记的任何不利影响,因为键合下方的相对面积百分比会增加。实验评估包括对各种探针标记范围内不同球直径的金 (Au) 球键合的键合拉力强度 (BPS) 和键合剪切力 (BS),以开始检查引线键合中惯常的“探针标记面积”最大限制的有效性。数据表明,大而深的探针标记确实会导致键合球提升失败,尤其是对于未优化的键合配方。看来探针标记深度,而不是面积,是键合可靠性中最不利的因素。在更受控制和“温和”的制造情况下,预计不会出现与探针标记键合相关的问题。
09:00-09:50 Tadaki(国家传染病研究所)感染性病理学对Covid-19的贡献10:00-10:00-10:50 Yamazaki Akira(大阪大学)(大阪大学)细胞介导的免疫反应对SARS-COV2 11:00-11:00-11:00-11:00-11:50 ARASE NAO(OSAKA NAO)介绍了OSAKA NAO(OSAKA NAO),以下简13:00-13:50 Nishiura Hiroshi(京都大学)Covid -19的传染病流行病学194:00-14:50 Sato Yoshi(Tokyo)新颖的Coronavirus大学的演变15:00-15:00-15:50-15:50
摘要:从Z10 Microcode的最新更新开始,以及ICSF,FMID HCR7770,IBM加密硬件的新支持,支持三种键。本文介绍了清晰键,安全键和受保护的键之间的基本差异,并且是对硬件如何为安全键提供额外保护的介绍。了解这三个区域之间的差异将有助于设计正确的加密解决方案并确定加密工作的硬件要求。加密是为了保护数据的过程。使用加密算法(一系列步骤)将数据拼写,该算法由密钥控制。键是输入算法的二进制数字序列。加密的安全性依赖于保持密钥的价值为秘密。在密码学中,必须确保所有对称密钥和公共/私钥对的私钥以保护数据。对于对称键,需要保护钥匙值,以便只有两个交换加密数据的双方才能知道键的值。DES,TDE和AES算法已发布,因此键提供了安全性,而不是算法。如果第三方可以访问密钥,则可以像预期的接收者一样轻松地恢复数据。对于非对称键,必须保护私钥,以便只有公共/私钥对的所有者才能访问该私钥。公共密钥可以并且将与将向键盘所有者发送加密数据的合作伙伴共享。安全的密钥硬件要求加载主密钥。在系统z加密环境中定义键为安全键时,该密钥将由另一个称为主键的密钥保护。IBM安全密钥硬件提供篡改感应和篡改响应环境,在攻击时,将对硬件进行归零并防止钥匙值受到损害。该主密钥存储在安全硬件中,用于保护操作密钥。硬件内(通过随机数生成器函数)生成安全密钥的清晰值,并在主密钥下进行加密。当安全密钥必须离开安全的硬件边界(要存储在数据集中)时,将密钥在主密钥下进行加密。因此,加密值存储,而不是密钥的清晰值。一段时间后,当需要恢复数据(解密)时,安全的键值将加载到安全的硬件中,在该硬件中将从主密钥中解密。然后将在安全硬件内使用原始键值,以解密数据。如果安全密钥存储在CKD中,并且主密钥更改,ICSF提供了重新启动安全键的能力;那就是将其从原始的主密钥中解密,然后在新的主密钥下重新加密它,所有这些都在安全硬件中,然后将其存储回新的CKD,现在与新的主密钥值相关联。当需要与合作伙伴共享时,也可以在密钥加密密钥或运输密钥下加密安全密钥。在这种情况下,当它留下硬件的安全边界时,它将在传输密钥(而不是主密钥)下进行加密。
对可持续清洁能源的需求推动了热电 (TE) 材料的发展,这种材料可将热能直接转化为电能并实现分布式冷却。[1–3] 能量转换效率通过无量纲性能系数 zT = S 2 σ T / ( κ ele + κ lat ) 来衡量,其中 S 、σ 、T 、κ ele 和 κ lat 分别为塞贝克系数、电导率、绝对温度、电子热导率和晶格热导率。[4–8] 尽管 zT 的表达式看起来很简单,但增加其值却是一项艰巨的任务。具体而言,虽然在半导体中通常获得较高的 S,但在金属中会发现较大的 σ ,而在非晶态材料中会实现较低的 κ lat 。[6,9] 这已经表明优化要求很复杂。显然,相关优化参数 S 、 σ 和 κ ele 紧密相关。这阻碍了 zT 的改善和优质热电材料的识别。因此,
Wirebondinghasbeenthemostwidelyusedandflexibleform of interconnecting technology in semiconductor manufacturing [1] .Themechanicalreliabilityofwirebondsinamicroelectronic package depends to a big extent on the formation of intermetallic compounds at the interface, environmental stress cycling of the module, fatigue and bonding process itself.债券过程控制和债券质量监控一直是制造OEM的主要关注点。电线键合是一个复杂的过程,具有许多参数(例如功率输入,粘结压力,粘结时间,阶段温度,传感器配置)。对于这样的制造过程,确定主要因素及其影响对于过程优化很重要。常规传感器组件包括以一端耦合的PZT(铅 - 循环酸 - 二烷基)驱动元件,以及键合工具耦合到传感器的输出端。为了维修/更换需求,该工具在组件上螺钉固定。这是具有“蟹腿”键合工具的三维结构。螺钉固定条件(工具上的扭矩值)可能会影响包装实践中的传感器性能,但是很少有有关此
摘要 在激光辅助键合工艺中检查激光束和芯片是否对准的动作称为芯片束对准。当前的芯片束对准方法是简单的肉眼目视检查,这使得该方法极易受到人为错误的影响,因为它取决于负责它的工程师/操作员的感觉和能力。此外,它缺乏明确的定量评估标准。本研究的目的是开发一种基于计算机视觉算法的无人为错误的芯片束对准方法。专用的图像采集相机与基于计算机视觉的定制软件相结合,成功地将芯片和激光束对准,精度为 0.060 毫米。简单的硬件设置与用户友好的软件相结合,使其成为一种方便的现场使用方法。 关键词 计算机视觉、芯片束对准、激光辅助键合、LAB。
热键合(TSB)是一种模具到die的键合方法,它在粘结过程中将新型的热压缩键合与超声波(美国)焊接结合在一起,因此,在微电子粘结应用中使用了每种质量的最佳质量。最初,TSB主要用于电线键合技术[1]。我们引入的引入通过降低在半导体制造中非常有吸引力的施加的粘结压力和温度来增强键合过程。Flip-Chip键合是针对区域阵列连接的一种无焊的模具到die键合技术(图1)。该方法用于将ICS底部的一系列金色凸起(图2)连接到基板上的镀金垫上。通常使用热压缩键合法[2],这是一个简单,干净且干燥的组装过程。纯热压缩键合通常需要> 300°C的界面温度[2,3]。此温度会损坏包装材料,层压板和一些敏感的微芯片[4]。这种下一个级别的键合解决方案在翻转芯片键合中非常有利,因为界面温度和粘结力通常可以低得多。分别在100至160°C和20和50g/ bump之间[2]。
在微电子领域,铜线越来越多地代替金线用于制作键合互连。在这些应用中使用铜有许多潜在的好处,包括更好的电气和机械性能以及更低的成本。通常,导线键合到铝接触垫上。然而,人们对导线/垫界面处 Cu/Al 金属间化合物 (IMC) 的生长了解甚少,如果过度生长,会增加接触电阻并降低键合可靠性。为了研究 Cu 球键合中 Cu/Al IMC 的生长,在 250 C 下高温老化长达 196 小时,以加速键合的老化过程。然后记录了 Cu/Al IMC 的生长行为,并获得了 6.2 ± 1.7 · 10 14 cm 2 /s 的 IMC 形成速率。除了垂直于键合界面的常规 yz 平面横截面外,还报告了平行于界面层的 xy 平面横截面。在光学显微镜下,在球键合 xy 平面横截面上,Cu/Al 界面处有三层 IMC 层,它们的颜色不同。微 XRD 分析结果证实,Cu 9 Al 4 和 CuAl 2 是主要的 IMC 产物,而发现第三相,可能是 CuAl。在老化过程中,IMC 膜从键合外围开始生长,并向内传播至中心区域。随后,随着老化时间的增加,在 IMC 层和 Cu 球表面之间观察到空洞,也是从键合外围开始。空洞最终连通并向中心区域发展,导致球和金属间层之间几乎完全断裂,这是 81 小时后观察到的。2007 Elsevier Ltd. 保留所有权利。
镀金用于航天级机械部件(电子电路外壳盒、载板等)。在电子领域,镀金用于提供耐腐蚀的导电表面。它还广泛用于半导体行业,例如电气开关触点、连接器插针和管筒以及其他发生间歇性电接触的应用。镀金通常用于航空航天应用。
