•肺炎链球菌在全球范围内的鼻咽度占5-70%,是下气道感染的重要前体。•S。肺炎是5岁以下儿童的主要感染原因,是社区获得性细菌性肺炎的最常见原因。•当前的肺炎球菌疫苗靶向多达23种肺炎链球菌的血清型,但是,循环中有100多种血清型,并且在覆盖的血清型中只有60-70%的有效性,这仅提供部分保护。•金黄色葡萄球菌渐近地定居于20-30%的人口的前鼻孔,并与远处感染的风险增加,包括皮肤和软组织感染,心内膜炎,菌血症和肺炎。•目前没有用于金黄色葡萄球菌的疫苗,预防策略仅限于卫生和接触预防。•corynebacterium是气道中的共生细菌,与减少的金黄色葡萄球菌和肺炎链球菌定殖以及促进更稳定的气道微生物组相关。•在这里,我们调查了Corynebacterium菌落化作为针对病原体感染的预防策略的潜力。
烟酰胺腺苷二核苷酸磷酸(NADPH)氧化酶(NOX)通过介导活性氧的产生,在真核细胞的生理学中具有重要作用。在细菌中发现了具有NOX催化核心的进化较远的蛋白质,包括肺炎链球菌NOX(SPNOX),该蛋白质被认为是研究NOX的模型,因为其在洗涤剂胶束中具有较高的活性和稳定性。我们在这里提出了无底物和烟酰胺腺苷二核苷酸(NADH)结合的SPNOX以及NADPH结合的野生型和F397A SPNOX的冷冻电子显微镜结构。这些高分辨率结构提供了对电子转移途径的见解,并揭示了由F397位移调节的氢化物转移机制。我们进行了结构引导的诱变和生化分析,这些诱变解释了对NADPH的底物特异性的缺乏,并提出了组成型活性背后的机制。我们的研究提出了结构基础SPNOX酶活性,并阐明了其体内功能的潜力。
引言口腔卫生在口腔健康中很重要,因为它意味着对牙菌菌细菌的主要控制,这是由于条件和援助要求,要么是口腔传染病的危险因素。因此,我们患有智障患者(ID)的口腔卫生不良,这使得诸如龋齿(龋齿),牙龈炎和牙周疾病之类的口腔病理的高患病率(横截面),所有这些疾病均由细菌pla plae pla pla pla pla pla pla pla pla pla [1-4-4-4-4-4-4-4-4-4-4-4)。口腔是由软组织,硬组织和唾液组成的空间,该空间由细菌,真菌,病毒,病毒,支原体,原生动物等微生物殖民,当时是细菌斑块的一部分,当钙化并形成牙齿或牙齿钙或tartar时。先前的研究表达了伦敦J.[5],是仅次于肠道的第二大微生物群落。对人口腔牙垢中祖先微生物组的研究揭示了基于生命功能的人与微生物之间的关联的重要性,例如急性和慢性疾病的作用及其生物人类学进化,随着时间的流逝[6]。祖先,在古代文明中证明了S. utans和牙龈疟原虫的存在,特别是来自智利南部圭蒂卡斯群岛的Chonoan [7,8]。通过人类研究的遗迹,可视化兼容的传染病,例如龋齿,牙周病和骨骼病变,可视化,伴随着口腔卫生不良,就像ID患者中一样[1]。它们可能与符合他们没有口腔卫生习惯的文化和生理因素有关[7,8]。随后的分子生物学研究,例如间接免疫荧光技术和PCR扩增,证明了Chonoan(Chonos)牙齿牙垢中的微生物存在[9,10]。在古代文明中存在两个或多种变体的PCR技术峰会物种,特别是在Chonoan中的p.gingivalis,由于微生物在5个复合物中存在的牙周疾病频率很高,因此,尺寸微生物中的微生物中存在的一部分是一个复杂的网络,p。根据[13]。在古代文明中存在两个或多种变体的PCR技术峰会物种,特别是在Chonoan中的p.gingivalis,由于微生物在5个复合物中存在的牙周疾病频率很高,因此,尺寸微生物中的微生物中存在的一部分是一个复杂的网络,p。根据[13]。
我们已经从肽二氢硫醇融合的2-吡啶酮支架中开发了GMPCIDES,该二吡咯酮融合了抗微生物活性,该酮具有抗微生物活性。在这里,我们使用皮肤和软组织感染(SSTI)和生物膜形成模型来检查GMPCIDES的治疗功效。筛选我们的化合物文库中的最小抑制性(MIC)和最小杀菌(MBC)浓度鉴定为对pyogenes的GMPCIDE PS757的浓度高度活跃。使用PS757对化脓性链球菌生物膜进行处理,揭示了通过防止初始生物膜发展,停止生物膜成熟并消除成熟生物膜的生物膜形成的所有阶段。在孢子链球菌SSTI的鼠模型中,皮下递送PS757导致组织损伤水平降低,细菌负担降低以及伤口愈合的加速速率,这与关键的病毒率因子的下调有关,包括M蛋白和SPEB蛋白质和SPEB固醇蛋白酶。这些数据表明,GMPCIDES对治疗化脓性链球菌感染显示出巨大的希望。
免疫系统可以识别并杀死恶性细胞。抗癌免疫机制被实现为多尺度,非线性细胞和分子过程。许多因素决定了免疫系统肿瘤相互作用的结果,包括癌症相关抗原,免疫细胞和宿主生物。在这种复杂性和非线性动力学的背景下,深度数据驱动的理论和数学建模可以提高我们对控制这些过程的机制,定义可靠的生物标志物的理解,并有可能提高免疫和联合疗法的能力。在这里,我们审查并总结了对研究主题的贡献“ Oncoimmunology中的数学建模和计算预测。” Metzcar等人的评论。讨论了一种机械学习方法的概述,该方法将机械数学建模与数据驱动的机器学习结合在一起。作者回顾了这种方法的观点,并讨论了机械学习如何推动数学肿瘤学。提供了四类的机械学习(顺序,平行,外在,内在),其中包括来自肿瘤学研究的示例,例如纵向肿瘤反应预测和事件时间分析。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是本版本发布的版权所有,于2024年5月15日发布。 https://doi.org/10.1101/2024.02.22.581527 doi:Biorxiv Preprint
表1。AOM患者的社会人口统计学和临床特征。 自2011年引入PCV-10以来,缺乏证据表明其对哥伦比亚五年以下儿童的急性中耳炎(AOM)的影响。 我们旨在描述3至59个月大的患者的临床和社会人口统计学特征,并诊断为AOM,他们参加了哥伦比亚卡塔赫纳的第三级健康机构。 我们估计了由肺炎链球菌引起的AOM的患病率,血清型分布和抗菌抗性模式。AOM患者的社会人口统计学和临床特征。自2011年引入PCV-10以来,缺乏证据表明其对哥伦比亚五年以下儿童的急性中耳炎(AOM)的影响。我们旨在描述3至59个月大的患者的临床和社会人口统计学特征,并诊断为AOM,他们参加了哥伦比亚卡塔赫纳的第三级健康机构。我们估计了由肺炎链球菌引起的AOM的患病率,血清型分布和抗菌抗性模式。
经过攻击后(第二剂疫苗接种后两周和两个月),与未接种疫苗的对照组相比,接种疫苗的马匹的急性临床症状有所减少。在接种疫苗的动物中,约 43%(28 匹小马中的 12 匹)没有发热(发热定义为三天中有两天体温达到或超过 39°C)。与未接种疫苗的动物相比,接种疫苗的动物发热天数明显较少。 - 36%(28人中的10人)没有出现咳嗽症状。 - 43%(28匹小马中的12匹)没有出现吞咽困难的迹象。 - 43%(28 人中的 12 人)在毒性测试后没有表现出明显抑郁的迹象(食欲不振、行为明显改变)。
A dynamic subpopulation of CRISPR-Cas overexpressers allows Streptococcus pyogenes to rapidly respond to phage Marie J. Stoltzfus 1 , Rachael E. Workman 1 , Nicholas C. Keith 1 , Joshua W. Modell 1 * 1 Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA *Correspondence: jmodell1@jhmi.edu摘要许多CRISPR-CAS系统,可为细菌提供适应性免疫,以防止噬菌体,在其本土宿主中受到转录抑制。如何根据需要诱导CRISPR-CAS的表达,例如在噬菌体感染期间,人们对此仍然了解不足。在链球菌为链球菌中,一种非典型的指南RNA TRACR-L指导Cas9自动燃烧自己的启动子。在这里,我们描述了具有破坏Cas9结合并导致CRISPR-CAS过表达的单个突变的细胞的动态亚群。CAS9通过提高TRACR-L目标部位的突变率来积极扩大该人群。过表达者表现出更高的记忆形成率,旧记忆的效力更强,并且相对于野生型细胞具有更大的记忆存储能力,而野生型细胞非常容易受到噬菌体感染的影响。然而,在没有噬菌体的情况下,CRISPR-CAS过表达会降低健身。我们建议CRISPR-CAS过表达者是噬菌体防御中的关键参与者,使细菌种群能够对噬菌体的快速转录反应,而无需任何一个单元格中的短暂变化。引言有效的免疫系统必须迅速识别和破坏外国威胁,同时避免宿主内的类似主题。细菌编码了越来越多的免疫效应子来防御噬菌体(噬菌体)和质粒,但是这些系统如何平衡免疫力和自身免疫仍然是一个悬而未决的问题。CRISPR-CAS系统可为细菌提供针对异物核酸的适应性免疫,已作为转化基因编辑工具,但是在许多细胞类型中,CAS核酸酶的异源过表达是有毒的1-4。在其本地宿主中,CRISPR-CAS系统通常在没有噬菌体或其他压力源的情况下被转录抑制。尽管这种抑制能够减轻自身免疫性,但尚不清楚(i)原生CIRSPR-CAS启动子是否足够强大以在其解除抑制状态下引起自身免疫性以及(ii)如何根据需要暂时诱导CRISPR-CAS表达。在某些细菌和古细菌物种中,CRISPR-CAS表达对噬菌体感染的直接反应增加了5-9。但是,对噬菌体感染的任何反应都是与相对较短的裂解周期的种族,这可能会限制这种反应的效用。另一种策略是在噬菌体到来之前增加CRISPR-CAS的表达。的确,许多CRISPR-CAS阻遏物受环境信号的调节,可能会预测噬菌体感染,包括种群密度,包络压力和营养供应10-13。然而,噬菌体感染可能会或可能不会先于这些信号,我们想知道是否可能存在更可靠的机制来为噬菌体感染制备细胞。CRISPR-CAS免疫包括三个阶段:适应,生物发生和干扰。在适应性链球菌中II-A型系统,30 bp的噬菌体DNA或“间隔者”中被从噬菌体中捕获,并将其掺入CRISPR阵列的5'末端,并将