第一章区块链技术概述 1. 人工智能AI,区块链Blockchain,云计算Cloud 和数据科学Data Science。 人工智能:生产力变革。大数据:生产资料变革。区块链:生产关系变革。 2. 可信第三方: 交易验证,交易安全保障,历史记录保存->价格昂贵,交易速 度嘛,欺诈行为。 区块链: 去中心的清算,分布式的记账,离散化的支付。任 何达成一致的无信任双方直接交易,不需要第三方中介。注意:信用破产,绝 对中心化,不透明无监管。 3. 区块链: 用于记录比特币交易账目历史的数据结构,每个区块的基本组成都 由上个区块的散列值、若干条交易及一个调节数等元素构成,矿工通过工作量 证明来维持持续增长、不可篡改的数据信息。区块链又称为分布式账本,是一 种去中心化的分布式数据库。 区块链技术 是在不完全可信的环境中,通过构建 点对点网络,利用链式数据结构来验证与存储数据,借助分布式共识机制来确 定区块链结构,利用密码学的方式保证数据传输和访问的安全,利用由自动化 脚本代码组成的智能合约来编程和操作数据。 4. 体系结构:数据层: 封装了区块链的底层数据存储和加密技术。每个节点存 储的本地区块链副本可以被看成三个级别的分层数据结构:区块链、区块、区 块体。每个级别需要不同的加密功能来保证数据的完整性和真实性。 网络层: 网格网络,权限对等、数据公开,数据分布式、高冗余存储vs 轴辐网络,中央 服务器分配权限,多点备份、中心化管理。 共识层: 能够在决策权高度分散的 去中心化系统中使得各节点高效地针对区块数据的有效性达成共识。出块节点 选举机制和主链共识共同保证了区块链数据的正确性和一致性,从而为分布式 环境中的不可信主体间建立信任关系提供技术支撑。 激励层: 经济因素集成到 区块链技术体系中,包括经济激励的发行机制和分配机制等。公有链:激励遵 守规则参与记账的节点,惩罚不遵守规则的节点,使得节点最大化自身收益的 个体理性行为与保障去中心化的区块链系统的安全和有效性的整体目标相吻合, 整个系统朝着良性循环的方向发展。私有链:不一定激励,参与记账的节点链 外完成博弈,通过强制力或自愿参与记账。 合约层: 封装区块链系统的各类脚 本代码、算法以及由此生成的更为复杂的智能合约。数据、网络和共识三个层 次作为区块链底层“虚拟机”分别承担数据表示和存储、数据传播和数据验证功能, 合约层建立在区块链虚拟机之上的商业逻辑和算法,是实现区块链系统灵活编 程和操作数据的基础。智能合约是一个在计算机系统上,当一定条件被满足的 情况下,可以被自动执行的合约(程序)区块链上的智能合约,一是数据无法 删除、修改,保证了历史的可追溯,作恶成本很高,其作恶行为将被永远记录; 二是去中心化,避免了中心化因素的影响。 应用层: 区块链技术是具有普适性 的底层技术框架,除可以应用于数字加密货币外,在经济、金融和社会系统中 也存在广泛的应用场景。 5. 区块链特征 :去中心,去信任;开放,共识;交易透明,双方匿名;不可篡 改,可追溯。 区块链分类: 公有链: 无官方组织及管理机构,无中心服务器, 参与的节点按照系统规则自由接入网络、不受控制,节点间基于共识机制开展 工作。 联盟链: 由若干机构联合发起,介于公有链和私有链之间,兼具部分去 中心化的特性。 私有链: 建立在某个组织内部,系统的运作规则根据组织要求 设定,修改甚至是读取权限仅限于少数节点,同时仍保留着区块链的真实性和 部分去中心化特征。 无许可区块链: 一种完全去中心化的分布式账本技术,允 许节点自由加入和退出,无需通过中心节点注册、认证和授权,节点地位平等, 共享整个账本。 许可区块链: 存在一个或多个具有较高权限的节点,可以是可 信第三方,也可以是协商制定有关规则,其他节点只有经过相应授权后才可访 问数据,参与维护。 6. 数字货币:区块链1.0 旨在解决交易速度、挖矿公平性、能源消耗、共识方 式以及交易匿名等问题,参照物为比特币(BTC)。区块链2.0 旨在解决数据隐 私、数据存储、区块链治理、高吞吐量、域名解析、合约形式化验证等问题, 参照物为以太坊(ETH)。
将这些技术应用于辽宁省的疾病预防控制实践。【关键词】疾病预防控制;数据中心;健康服务;健康信息;区块链;星际文件系统;人工智能;安全沙箱
(国家电网新区域电源公司,Xiongan新区域071600,中国)摘要:边缘设备和输电线路智能检查的组合可以满足重新的需求 -
[摘要]长的非编码RNA(LNCRNA)是由200多个核苷酸构成的RNA分子,表现出相对较低的序列保护。很长一段时间以来,它们被视为“转录噪声”,即在生物领域中的非功能性RNA分子。近年来,随着研究的进步,科学家们在lncrnas中揭示了许多小型开放式阅读框(SORF),其中一些可以编码微肽。这些微肽已被证实参与了各种细胞过程和基因表达调节网络,扮演着至关重要的作用。这一发现为进一步探索生活活动以及临床诊断和疾病治疗的新研究方向开辟了新的研究方向。本综述总结了LNCRNA编码的菌根在病理和生理过程中的作用,微肽的亚细胞定位和功能机制以及微肽研究方法的进展,旨在为新型积分基于磨性的诊断诊断和治疗方法提供洞察力和参考。[关键词]长的非编码RNA;小开放阅读框;微肽;肿瘤
壹、目的 ............................................................................................................................... 3
在现代操纵器交互任务中,由于环境的复杂性和不确定性,准确的对象表面建模通常很难实现。因此,改善操纵器与环境之间相互作用的适应性和稳定性已成为相互作用任务的重点之一。针对操纵器的互动任务,本文旨在在视觉指导下实现良好的力量控制。因此,基于Mujoco(带有触点的多关节动力学)物理引擎,我们为操纵器构建了交互式仿真环境,并创新地集成了基于位置的视觉伺服控制和录取控制。通过深度强化学习(DRL)中的近端策略优化(PPO)算法,有效地集成了视觉信息和力量信息,并提出了结合视觉感知的接收性控制策略。通过比较实验,将允许控制与视觉感知相结合,并将力控制的整体性能提高了68.75%。与经典的入学控制相比,峰值控制精度提高了15%。 实验结果表明,在平坦和不规则的凹面环境中,允许控制与视觉感知结合表现良好:它不仅可以准确地执行视觉构成的力控制任务,而且还可以在各种接触表面上维持施工力,并迅速适应环境变化。与经典的入学控制相比,峰值控制精度提高了15%。实验结果表明,在平坦和不规则的凹面环境中,允许控制与视觉感知结合表现良好:它不仅可以准确地执行视觉构成的力控制任务,而且还可以在各种接触表面上维持施工力,并迅速适应环境变化。在精确组装,医疗援助和服务操纵器的领域中,它可以提高操纵器在复杂和不确定的环境中的适应能力和稳定性,从而促进智能操纵器的自主操作的发展。
智能手机是最适合承载端侧 AI 的载体, AI 手机可提供差异化的用户价 值与品牌价值。智能手机具有保有量大、使用便携、使用场景多、使用 时长久、应用生态系统强大等优势,可创造众多的 AI 使用场景,并加速 第三方 AI 应用成熟,我们认为智能手机将是生成式 AI 最佳的应用载体 之一。 AI 手机的定义具有三个典型特征:①能够在手机端侧运行大模型; ② SoC 中包含 NPU 算力;③达到一定参数要求的性能指标。 AI 手机可提 供差异化的用户价值与品牌价值。对用户而言, AI 手机将是自在交互、 智能随心、专属陪伴、安全可信的个人化助理,使用体验较目前阶段智 能手机大幅提升。对于手机厂商而言,可提供品牌形象与用户粘性。
1.下载 ............................................................................................................................................... 3
从外部知识库中检索适当的记录以产生信息的响应是端到端面向任务对话系统(ETODS)的核心capabil。大多数现有方法还训练检索模型或使用内存网络来检索知识基础,该基础将知识检索任务与响应生成任务取消,因此很难共同优化并且无法捕获两个任务之间的内部关系。在本文中,我们为任务为导向的对话系统提出了一个简单而统一的生成模型,该模型将ETODS任务重新铸造为单个序列生成任务,并使用最大的似然培训以统一的方式训练这两个任务。为了防止生成不存在的记录,我们设计了前缀Trie来限制模型生成,从而确保生成的记录与知识基础中的现有记录之间的一致性。三个公共基准数据集的实验结果表明,我们的方法在生成系统响应并胜过基线系统方面实现了强大的表现。为了促进该领域的未来研究,可以在https://github.com/dzy1011/uni-tod上获得该代码。
肽是治疗诊断开发的理想选择,因为它们能够快速在目标组织中积累、快速从背景组织中清除,并表现出良好的组织穿透性。之前,我们开发了一系列表现出谨慎折叠倾向的新型肽,从而获得了最佳候选物 [ 68 Ga]Ga-DOTA- GA1 ([D-Glu] 6 -Ala-Tyr- N MeGly-Trp- N MeNle-Asp-Nal-NH 2 ),其对胆囊收缩素 2 受体 (CCK 2 R) 的结合亲和力为 50 pM。然而,我们面临着肾脏摄取率过高的挑战。方法:对主要的治疗诊断候选物进行了构效关系研究。对肽支架进行了审慎的结构修饰,以评估特定 N 端残基对整体生物活性的贡献。然后在带有转染的 A431-CCK 2 肿瘤的裸鼠中评估最佳候选药物,并体外定量它们的生物分布。结果:我们鉴定并证实 D-Glu 3 替换为 D-Ala 3 产生了 2 个最佳候选药物,[ 68 Ga]Ga-DOTA- GA12 和 [ 68 Ga]Ga-DOTA- GA13 。这些放射性肽表现出高靶标/背景比、增强的肿瘤保留、血浆和小鼠器官匀浆中的优异代谢稳定性以及肾脏摄取降低 4 倍,明显优于非丙氨酸对应物。结论:我们的研究确定了针对 CCK 2 R 的新型放射性药物候选药物。它们的高肿瘤摄取和减少的肾脏蓄积值得临床转化。