跟踪。由于 2-D 雷达提供的绘图数据仅包含距离和方位角信息,由于可观测性问题,无法使用单个传感器估计目标高度,因此需要结合从多个 2-D 雷达获得的信息(距离和方位角)。如果只有两个主雷达检测到飞机,则无法使用多点定位技术在空中交通管制系统中确定其高度。一次监视雷达 (PSR) 仅提供飞机的斜距和方位角测量,因此,空中交通管制 (ATC) 系统通常使用从飞机机载模式 C 应答器获得的高度信息来估计飞机的三维位置和速度。二次监视雷达 (SSR) 通常用于询问模式 C 和其他应答器并获取高度和其他
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要我们报告了由单晶立方ktao 3中的位错介导的室温散装可塑性,与传统的知识形成了鲜明的了解,即单晶ktao 3容易受到脆性裂解的影响。使用环状Brinell凹痕,划痕和单轴体积压缩的基于力学的组合实验方法始终显示从Mesoscale到宏观尺度的KTAO 3中的室温脱位。这种方法还提供可调的脱位密度和塑性区域尺寸。扫描传输电子显微镜分析基于激活的滑移系统为<110> {1-10}。鉴于KTAO 3作为新兴的电子氧化物的意义越来越重要,并且对调谐氧化物物理特性的脱位的兴趣越来越大,我们的发现有望引发与脱位的KTAO 3的协同研究兴趣。
8 三星电子有限公司三星先进技术研究所 (SAIT),韩国水原 16678 gwanlee@snu.ac.kr 摘要 (Century Gothic 11) 通过化学气相沉积 (CVD) 在具有外延关系的晶体基底(例如 c 面蓝宝石)上合成了晶圆级单晶过渡金属二硫属化物 (TMD)。由于 TMD 外延生长的基底有限,因此需要将转移过程转移到所需的基底上进行器件制造,从而导致不可避免的损坏和皱纹。在这里,我们报告了通过过渡金属薄膜的硫属化在超薄 2D 模板(石墨烯和 hBN)下方的 TMD(MoS 2 、MoSe 2 、WS 2 和 WSe 2 )的异轴(向下排列)生长。硫族元素原子通过石墨烯在硫族化过程中产生的纳米孔扩散,从而在石墨烯下方形成高度结晶和层状的TMD,其晶体取向排列整齐,厚度可控性高。生长的单晶TMD显示出与剥离TMD相当的高热导率和载流子迁移率。我们的异轴生长方法能够克服传统外延生长的衬底限制,并制造出适用于单片3D集成的4英寸单晶TMD。参考文献 [1] Kang, K. 等。具有晶圆级均匀性的高迁移率三原子厚半导体薄膜。Nature 520 , 656-660 (2015).[2] Liu, L. 等。蓝宝石上双层二硫化钼的均匀成核和外延。Nature 605 , 69-75 (2022) [3] Kim, K. S. 等人。通过几何限制实现非外延单晶二维材料生长。Nature 614 , 88-94 (2023)。
了解结构和电子对称性破坏在基于Fe的高温超导体中的相互作用仍然引起了人们的关注。在这项工作中,我们使用分子束外延在一系列厚度中种植了应变的多层FESE薄膜。我们使用扫描隧道显微镜和光谱法研究了电子列区域和空间变化应变的形成。我们直接可视化边缘的形成,从而导致膜中的二维边缘脱位网络。有趣的是,我们观察到位错网络的45度内部旋转是膜厚度的函数,从而沿不同方向产生抗对称应变。这会导致电子列域和反对称应变之间的耦合比不同。最后,我们能够通过揭示两个区域之间差分电导图的较小能量依赖性差异来区分不同的正交列域。这可以通过轨道选择性尖端样本隧道来解释。我们的观察结果为外延薄膜中的脱位网络形成带来了新的见解,并提供了另一个纳米级工具来探索基于Fe的超导体中的电子nematicity。
结果 来自 6779 名患者的训练和验证数据集包括 14,341 张照片:9156 张正常视盘、2148 张有视乳头水肿的视盘和 3037 张有其他异常的视盘。分类为正常的百分比在各个部位从 9.8% 到 100% 不等;分类为有视乳头水肿的百分比在各个部位从 0 到 59.5% 不等。在验证集中,系统以 AUC 为 0.99(95% 置信区间 [CI],0.98 至 0.99)区分有视乳头水肿的视盘与正常视盘以及有非视乳头水肿异常的视盘,以 AUC 为 0.99(95% CI,0.99 至 0.99)区分正常视盘与异常视盘。在 1505 张照片的外部测试数据集中,该系统对视乳头水肿检测的 AUC 为 0.96(95% CI,0.95 至 0.97),灵敏度为 96.4%(95% CI,93.9 至 98.3),特异性为 84.7%(95% CI,82.3 至 87.1)。
Clay-Rhynes/RGB 眼科疾病住院医师将接触各种眼部和全身疾病,每天接触尖端仪器。住院医师实习分为 Clay-Rhynes 眼科诊所(俄克拉荷马州杜兰特)和 RGB 眼科协会(德克萨斯州谢尔曼)。Clay-Rhynes 眼科诊所是我们 8000 平方英尺先进诊所中的一家高容量医疗/外科诊所,住院医师将在那里进行 YAG 囊切开术、虹膜切开术和玻璃体溶解术,以及放射外科病变切除术和异物去除术。住院医师将参加所有手术,并为住院医师转诊的每位接受白内障和 LASIK 手术的患者进行所有术后护理。住院医师将有机会观察和管理大量青光眼、白内障和黄斑变性患者。然而,由于我们的人口统计数据,住院医师
我们描述了一名70岁妇女的情况,该妇女发展出跨层皮质,V1和相关视觉关联皮层的脑梗塞。她出现了对物体的重复图像,较低的保真度和原始(Polyopia)的透明副本的视觉感知障碍,与全息图非常相似。我们抓住了这个机会来解释这些虚假图像的产生。这使我们得出了不少于壮观的自动脑理论,该理论解释了大脑的高度熵,大脑皮层中数据的存储,大脑组织的等电位性以及大脑计算算法和感知感觉的能力。人脑的这种显着能力需要在大脑皮层的高度相互连接和密集的树突树中的数学傅立叶变换和电势势的部署。这里探索的想法是崇高的。这些阴谋被认为是在自然界深深地根深蒂固的。不少于黑洞和宇宙本身。我们的案例以图形和生动的方式为大脑功能的全息模型提供了证据。
答:激光荧光投影仪通常简称为“激光投影仪”,但激光投影仪还有另一种平台,通常称为 RGB 激光,其处理光线的方式截然不同,但都为最终用户提供了多种好处。激光荧光是一种固态无灯投影照明平台,与基于灯的投影技术相比,其使用寿命更长。1DLP® 技术 1DLP® 投影仪使用蓝色激光二极管作为主要光源,以产生三原色 - 红、蓝、绿 - 激光二极管发出的蓝光照射到涂有荧光化合物的旋转轮上,发出黄光。使用二向色滤光片分离黄光以产生红光和绿光,而蓝光成分则直接穿过荧光轮的透明扩散段。红、绿、蓝三色传递到 DLP® 芯片的成像表面,然后 DLP® 芯片将光线通过镜头发送到投影屏幕上。 3LCD 技术 3LCD 投影仪使用白色激光二极管作为主要光源,使用二向色滤光片分离每种颜色来产生三原色,然后使单独的红、绿和蓝光穿过三个透射式 LCD 成像面板,之后光重新组合以通过镜头在投影表面上创建图像。
FRONT SIDE Cover page CEO CEO 08 AUG 24 08 AUG 24 - - Anomalies / Suggestions A 23 MAR 23 - - Registration of BMJ B 28 DEC 23 - - CTL CTL 1 CTL 1 08 AUG 24 08 AUG 24 CTL 2 CTL 2 08 AUG 24 08 AUG 24 GEN GEN SUM 01 16 JUN 22 GEN SUM 02 24 MAR 22 GEN LEG 01 24 MAR 22 GEN LEG 02 24 MAR 22 GEN LEG 03 24 MAR 22 GEN LEG 04 24 MAR 22 GEN LEG 05 24 MAR 22 GEN LEG 06 24 MAR 22 GEN LEG 07 24 MAR 22 GEN LEG 08 24 MAR 22 GEN ABB 01 24年3月22日ABB 02 24 3月22日ABB 03 24 3月22日ABB 04 24 3月22日ABB 05 ABB 05 24 3月22日1月22日ABB 06 24 3月22日1月24日1月24日1月24日1月22日1月22日1月24日1月24日1月24日1月24日24 MAR 22 MAR 22 MAR 22 1月22日1月22日24 MAR 22 ABB 24 MAR 22 ABB 24 MAR 22 1月22日1月22日1月22日1月22日1月22日1月22日1月22日22 1月22日22 16 16 16 16 22 cod cod cod od 16 JUN 22 JAN COD 06 16 JUN 22 JAN COD 07 16 JUN 22 JAN COD 08 16 JUN JUN 22 GEN COD 09 16 六月 22 GEN COD 10 16 六月 22 GEN COD 11 16 六月 22 GEN COD 12 16 六月 22 GEN SIG 01 24 六月 22 GEN SIG 02 24 六月 22 GEN SIG 03 24 六月 22 - - 地图 SIV AD 2 SIV 01 18 六月 24 AD 2 SIV 02 18 六月 24 机场 A AMBERIEU AD 2 LFXA
