雷神空间与机载系统正在积极推进这一系统,因为该系统具有有益的探测器化学特性。砷掺杂硅 (Si:As) 焦平面为长波红外 (LWIR) 天文学和地球传感应用提供了卓越的性能;然而,操作需要低温冷却至 12 K 以下。现有的最先进的空间和机载闭式循环低温冷却器系统通常无法同时将所需负载保持在 12 K / 55 K 以下,因此通常采用储存制冷剂系统。所需制冷剂的数量相当大,很容易超过仪器的质量和体积。因此,发射质量和体积限制对任务寿命产生了严重限制。因此,闭环低温解决方案不仅可以提供更小的质量和体积,还可以提供更长的任务寿命和更低的物流成本。迄今为止,雷神公司已经设计、建造和测试了三种不同的热机械单元 (TMU),以满足 Si:As 和其他系统的要求:AFRL 资助的高容量-RSP2 (HC-RSP2)、IRAD 资助的 LT-RSP2 和生产 LT-RSP2。
长波长发光材料的严重猝灭是制约OLED发展的重要瓶颈,例如Zhang等报道了一系列新型DA型橙色和红色荧光材料,其外量子效率(EQE)仅为3.15%,发射峰在592nm,而外量子效率(EQE)仅为2.66%,发射峰在630nm。16以三苯胺和N,N-二苯基苯胺为结构发光材料的橙色器件的最大EQE较低,为3.42%。17Yang等也报道了一种以吡啶-3,5-二腈为核心的TADF橙色发光材料,其电致发光(EL)峰值在600nm,其最大EQE为9.8%,18远低于蓝色和绿色器件。具有特色 DA 结构的 HLCT 基材料可以通过快速“热激子”通道从高位三线态 T m 实现逆向系统间窜改 (RISC) 到高位单线态 S n 。由于特殊的杂化局域电子 (LE) 和电荷转移 (CT) 激发态,这种独特的特性使 HLCT-OLED 具有高 EQE 和不明显的效率下降。19
基于石墨烯的范德华异质结构利用了通过接近效应在石墨烯层中调整自旋轨道耦合(SOC)。在长波长处 - 由狄拉克点附近的电子状态骑马 - 可以通过涉及新型SOC术语的汉密尔顿人有效地建模,并允许通过所谓的rashba角度θr的切向和径向自旋纹理的混合。采用这种有效的模型,我们执行逼真的大规模磁转运计算 - 横向磁心焦点和Dyakonov-perel自旋松弛 - 并表明存在着独特的定性和定量特征,允许其无偏见的实验性分解,从而从其新颖的Radial对方中对常规的Rashba Soc进行了无偏见的SOC,此处称为Radial Rashba Soc。与此一起,我们提出了一个方案,以直接估算RASHBA角,通过探索磁响应对称性在交换平面磁场时。为了完成故事,我们在出现的Dresselhaus SoC的存在下分析了磁磁运输和自旋 - 弹性签名,还为径向超导二极管效应的可能场景提供了一些通用的后果。
能够同时在两个波段成像的双波段红外 (IR) 焦平面阵列 (FPA) 探测器在过去十年中已经发展成熟 [1]–[5]。由于物体和背景的热特征与波长有关,因此理论上该技术可用于提高各种重要应用中的目标检测、跟踪和杂波抑制性能 [6]–[8]。例如,在短波红外 (SWIR) 和中波红外 (MWIR) 波段以及 MWIR 和长波红外 (LWIR) 波段工作的双波段传感器已用于地对空导弹导引头以抵抗干扰弹等干扰 [9], [10]。MWIR/LWIR 传感器目前用于舰载红外搜索和跟踪 (IRST) [11], [12],MWIR/MWIR 传感器已用于防止飞机导弹预警接收器的误报 [13]–[15]。在一些国家,陆军、海军和空军在 8-12 µm LWIR 波段和 3-5 µm MWIR 波段的双波段传感器的开发方面投入了大量资金。这些波段具有几个重要差异。排气口和发动机羽流等热物体在 MWIR 中更为明显 [7]、[10]、[16],而机身、机身和导弹硬体在 LWIR 中更为明显 [7]、[10]。水蒸气吸收在 LWIR 中占主导地位,而二氧化碳吸收在
摘要 - 基于医学互联网(IOMT)和环境技术的监视内姿势估计对许多应用具有重大影响,例如与睡眠相关的疾病,包括阻塞性睡眠呼吸暂停综合症,睡眠质量评估和压力溃疡的健康风险。在这项研究中,已经提出了使用深度学习框架提出的新的多模式内姿势估计。同时收集的多模式说谎姿势(SLP)数据集已用于对所提出的框架进行性能评估,其中使用了两种模式,包括长波红外(LWIR)和深度图像来训练拟议的模型。这项研究的主要分配是特征融合网络和生成模型的使用来生成与其他模态相似的RGB图像(LWIR/DEPTH)。包含生成模型有助于提高姿势估计算法的总体准确性。此外,可以将该方法推广到在各种覆盖厚度水平下在家庭和医院环境中恢复人类姿势的情况。将所提出的模型与其他基于融合的模型进行了比较,并显示了PCKH @ 0.5的97.8%的提高性能。此外,已经评估了不同覆盖条件的性能,在家庭和医院环境下,使用我们建议的模型进行了改进。
标题:迈向多光谱红外成像 演讲者姓名:Elahe Zakizade 博士 公司名称/研究所:弗劳恩霍夫微电子电路与系统研究所 项目名称:Eurostars SPEKTIR 资助小组:Eurostars 摘要是否可以在网站上发表: ☒ 是 ☐ 否 提供最多 500 字的摘要。使用 ARIAL 字体,11 号。如果使用图表,文本和图表必须保持在这一页内。 近年来,热成像相机市场不断增长。主要驱动因素是基于微测辐射热计技术的非制冷红外焦平面阵列 (IRFPA),因为它们是低成本成像仪,不需要额外的复杂和昂贵的冷却系统。大多数当前的热成像应用都基于长波红外 (LWIR) 辐射的检测,波长覆盖从 8 μm 到 14 μm,对人体温度敏感,不仅可用于军事应用,而且在智能手机、监控摄像头或自动驾驶汽车等大众市场应用中也越来越受欢迎。此外,非制冷热像仪在波长范围为 3 μm 至 5 μm 的中波红外 (MWIR) 中也能敏感。MWIR 传感器可用于监测温度高达几百摄氏度的“热源”、检测危险或易燃气体或环境监测等应用。红外区域多光谱成像的实现引起了广泛关注,因为它能够可视化和组合来自 MWIR 和 LWIR 区域的信息。微测辐射热计作为非制冷 IRFPA 的传感元件,采用热原理运行。它们是独立的隔热传感器膜。它们吸收红外辐射并将其转化为温度上升。微测辐射热计膜的温度变化会导致电阻随入射功率的变化而变化。CMOS 读出电路将微测辐射热计随温度变化的电阻变化转换为数字值并生成图像。实现多光谱吸收的一种有前途的方法是使用等离子体超材料吸收器 (PMA)。在过去的几十年中,等离子体领域因其各种潜在应用而备受关注,尤其是在可见光谱范围内。等离子体结构的研究也已扩展到红外区域,以实现高吸收率并调整中波红外和长波红外光谱区域的吸收波长。实现适用于弗劳恩霍夫 IMS 微测辐射热计技术的合适吸收器的有希望的候选材料是金属-绝缘体-金属 (MIM) 结构,该结构由上部周期性金属结构、中间介电层和下部金属反射层组成,以在所需的吸收波长下产生强局部表面等离子体共振。材料选择,弗劳恩霍夫 IMS 研究了沉积技术和图案化工艺,以实现高灵敏度的多光谱热成像。弗劳恩霍夫 IMS 将报告其在实现多光谱红外成像方面取得的进展。它将展示用于多光谱红外成像的带有等离子体超材料吸收器的微测辐射热计的最新模拟结果和实验表征。
熟练的下海预测对于社会的各个部门至关重要,但构成了宏伟的科学挑战。最近,基于机器的天气前铸造模型优于欧洲中范围天气预测中心(ECMWF)产生的最成功的数值天气预测,但尚未超过季节时间尺度上的常规模型。本文介绍了Fuxi亚季节至季节(FUXI-S2S),这是一种机器学习模型,可提供长达42天的全球日平均预测,其中包括13个压力水平和11个表面变量的五个高空大气变量。fuxi-S2S对ECMWF ERA5重新分析数据进行了72年的每日统计培训,在整体平均值中超过ECMWF的最先进的季节至季节模型,用于总降水量和整体预测,用于总降水量和外出的长波辐射,显着增强了全球阳性预测。FUXI-S2S的性能提高可以归因于其占据预测不确定性并准确预测Madden-Julian振荡(MJO)的卓越能力,从而将熟练的MJO预测从30天扩展到36天。此外,Fuxi-S2S不仅捕获了与MJO相关的现实遥控器,而且还成为发现前体信号的有价值工具,为研究人员提供了洞察力,并有可能在地球系统科学研究中建立新的范式。
作为微电子领域的一个总体趋势,产品小型化越来越重要,并能带来成本和系统优势。顺应这一总体趋势,新型红外凝视阵列越来越紧凑,并能为不同的红外波段提供系统解决方案。在法国,HgCdTe(碲化汞镉/MCT)材料和工艺以及混合技术已达到更先进的水平,以提供这些新型凝视阵列。因此,对于中波(MW)应用,15µm 间距电视格式(640×512)HgCdTe 探测器(称为 Scorpio)配有 1/4-W 微型冷却器和小型化低温技术。这种优化的杜瓦瓶已扩展到 TV/4 格式,使用自 2000 年以来已大规模生产的成功的焦平面阵列。关于长波阵列,Sofradir 多年来一直提供 320×256 LW 探测器,其截止波长在 9 到 12 µm 之间调整,具体取决于所需的应用。基于这一经验,2004 年开发了两种新的 LW HgCdTe 产品,并从 2005 年初开始提供。依靠具有最新改进的标准 HgCdTe 生产工艺和优化的杜瓦瓶系列,现在推出了 Venus LW 探测器。这是一款分辨率更高的 25 µm 间距 384×288 LW IDDCA,配备 0.5 W 微型冷却器,截止波长在 9 到 10 µm 之间,工作温度在 77 K 到 85 K 之间,规格
摘要:山上在水资源可用性中起着极大的作用,并且它们提供的水的数量和时机在很大程度上取决于温度。为此,我们提出了一个问题:大气模型捕捉山温度的程度如何?我们合成结果表明,高分辨率,与区域相关的气候模型产生的空气温度(T2M)测量比观察到的(一种“冷偏置”)更冷,尤其是在冬季雪覆盖的中纬度山脉中。我们在全球山脉的44项研究中发现了常见的冷偏见,包括单模型和多模型合奏。我们探讨了推动这些偏见的因素,并检查了T2M背后的物理机制,数据限制和观察性不确定性。我们的分析表明,偏见是真实的,不是由于观察到的稀疏性或分辨率不匹配。冷偏置主要发生在山峰和山脊上,而山谷通常是温暖的偏见。我们的文献综述表明,增加模型分辨率并不能清楚地减轻偏见。通过分析科罗拉多洛矶山脉中的地表大气中的数据集成现场实验室(SAIL)现场活动,我们测试了与冷偏见有关的各种假设,发现当地的风回流,长波(LW)辐射和地表层参数有助于在此特定位置的T2M偏见。我们通过强调在仪器高的山区位置的协调模型评估和开发工作的价值来解决,以解决T2M偏见的根本原因,并提高对山气候的预测性理解。
摘要:向太空发射的长波辐射 (OLR) 是地球能量预算的基本组成部分。有许多相互交织的物理过程会影响 OLR,并推动和应对气候变化。光谱解析观测可以解开这些过程,但技术限制阻碍了精确的空间光谱测量,覆盖 100 至 667 cm −1(波长在 15 至 100 µ m 之间)的远红外 (FIR)。因此,地球的 FIR 光谱基本上无法测量,即使至少一半的 OLR 来自此光谱范围。该地区受到对流层上部和平流层下部水蒸气、温度递减率、冰云分布和微物理的强烈影响,所有这些气候系统中的关键参数都变化很大,而且仍然很少被观察和理解。为了覆盖地球观测中这一未知领域,远红外外向辐射理解与监测 (FORUM) 任务最近被选为 ESA 的第九个地球探测器任务,将于 2026 年发射。FORUM 的主要目标是首次以高绝对精度测量光谱分辨 OLR 的远红外分量,具有高光谱分辨率和辐射精度。该任务将提供全球观测的基准数据集,这将大大增强我们对地球大气关键强迫和反馈过程的理解,从而能够更严格地评估气候模型。本文介绍了该任务的动机,强调了新测量预期带来的科学进步。