长读测序技术通过生成足够长的读长来跨越和解析基因组的复杂或重复区域,提高了基因组组装的连续性,从而提高了质量。一些研究小组已经展示了长读长在检测数千个基因组和表观基因组特征方面的强大功能,而这些特征以前被短读长测序方法遗漏了。虽然这些研究表明了长读长如何帮助解析基因组的重复和复杂区域,但它们也强调了使用这些平台准确解析大量群体中的变异等位基因所需的通量和覆盖率要求。在撰写本文时,在最高通量短读长仪器上,全基因组长读长测序比短读长测序更昂贵;因此,实现足够的覆盖率以检测异质样本中的低频变异(如体细胞变异)仍然具有挑战性。另一方面,靶向测序提供了在异质群体中检测这些低频变异所需的深度。在这里,我们回顾了当前使用和最近开发的靶向测序策略,这些策略利用现有的长读技术来提高我们在各种生物背景下观察核酸的分辨率。
用例 1:重复扩增障碍 长读测序能够研究难以通过 PCR 扩增的区域。这为诊断由重复扩增引起的疾病开辟了新的可能性。我们与 Clinical Genomics Uppsala 合作,设计了可以同时检测多个重复扩增基因的检测方法。这些方法在患者样本的 DNA 上进行了测试。
您将组装来自锯齿状铜菌菌株Cav1492的分离株。该菌株具有一个染色体和五个质粒。测序数据包含7,038个小小的读取,平均读取长度超过12,000 bp,一组Illumina读取了从同一菌株进行测序的读取。Illumina读取已被删除,以降低本教程中的分析时间。数据集中包含的参考基因组是由深层覆盖的PACBIO和配对末端测序数据制成的。可从https://ncbi.nlm.nih.gov/datasets/ genome/gca_001022215.1/。
NGS库准备期间的传统测量包括在特定尺寸范围内确定样品质量。该分析很容易用安捷伦自动电泳仪器进行,该仪器以数字凝胶图像和电图图的形式提供视觉结果。电文件图显示荧光信号作为图形表示,X轴上的大小和Y轴上的相对荧光单元(RFU)。因此,荧光信号的高度与给定尺寸的样品质量成正比。虽然该表示形式已被广泛用于剪切GDNA和最终NGS库的质量控制,但检查样品的摩尔性可能会提供更好的视觉表示,以显示样品可以产生的测序读数数量,尤其是用于长阅读测序。高分子重量样品。优势允许用户通过将Y轴从RFU切换到Nmole/L来可视化电处理图像作为质量或摩尔度的产物。通过可视化摩尔数中的数据并使用涂片分析,可以使用FEM脉冲来确定不同尺寸括号内发现的样品的摩尔数,并提供更好的长阅读测序读取长度的预测。
[摘要]长的非编码RNA(LNCRNA)是由200多个核苷酸构成的RNA分子,表现出相对较低的序列保护。很长一段时间以来,它们被视为“转录噪声”,即在生物领域中的非功能性RNA分子。近年来,随着研究的进步,科学家们在lncrnas中揭示了许多小型开放式阅读框(SORF),其中一些可以编码微肽。这些微肽已被证实参与了各种细胞过程和基因表达调节网络,扮演着至关重要的作用。这一发现为进一步探索生活活动以及临床诊断和疾病治疗的新研究方向开辟了新的研究方向。本综述总结了LNCRNA编码的菌根在病理和生理过程中的作用,微肽的亚细胞定位和功能机制以及微肽研究方法的进展,旨在为新型积分基于磨性的诊断诊断和治疗方法提供洞察力和参考。[关键词]长的非编码RNA;小开放阅读框;微肽;肿瘤
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月14日发布。 https://doi.org/10.1101/2025.01.09.632261 doi:Biorxiv Preprint
摘要 衰老会破坏 DNA 修复和表观遗传控制等细胞过程,导致基因组改变的逐渐积累,从而对有丝分裂后细胞产生有害影响。基因组中富含重复序列的区域的基因组变异通常被称为“暗位点”,使用传统测序方法很难解决。新的长读技术为探索以前无法访问的基因组区域提供了有希望的途径。使用基于纳米孔的长读全基因组测序从 18 岁人类大脑中提取的 DNA,我们确定了重复 DNA 中以前未报告的结构变异和甲基化模式,重点关注转座因子(“跳跃基因”)作为变异的关键来源,特别是在暗位点中。我们的分析揭示了潜在的体细胞插入变异,并为许多逆转录转座子家族提供了 DNA 甲基化频率。我们进一步展示了该技术在研究阿尔茨海默病患者大脑中这些具有挑战性的基因组区域方面的实用性,并确定了病理正常大脑与阿尔茨海默病患者大脑中 DNA 甲基化的显著差异。为了突出这种方法的强大功能,我们发现了具有改变的 DNA 甲基化模式的特定多态性逆转录转座子。这些逆转录转座子位点有可能导致病理学,值得在阿尔茨海默病研究中进一步研究。总之,我们的研究首次基于长读 DNA 测序分析了阿尔茨海默病神经病理学中衰老大脑的逆转录转座子序列、结构变异和 DNA 甲基化。
© Crown 2023。开放存取 本文根据知识共享署名 4.0 国际许可证授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可证中,除非在资料的信用额度中另有说明。 如果资料未包含在文章的知识共享许可证中,并且您的预期用途不被法定规定允许或超出了允许的用途,您将需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativecommons.org/ publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源处另有说明。