摘要#1875257 Sarah B Kingan 1、Guilherme De Sena Brandine 1、Jocelyne Bruand 1、Jeff Zhou 1、Valeriya Gaysinskaya 1、Janet Aiyedun 1、Julian Rocha 1、Duncan Kilburn 1、Egor Dolzhenko 1、Zoi Kontogeorgiou 2、Anita Szabo 3, Christina Zarouchlioti 3, Robert Thaenert 4, Pilar Alvarez Jerez 5, Kimberley Billingsley 5, Sonia Lameiras 6, Sylvain Baulande 6, Alice Davidson 3, Georgios Koutsis 7, Georgia Karadima 2, Stéphanie Tomé 8, Michael A Eberle 1 1. Pacific Biosciences (PacBio),门洛帕克,美国、2. 雅典国立卡波迪斯特里安大学,第一神经病学系,希腊雅典,3. 伦敦大学学院,眼科研究所,英国,4. Quest Diagnostics,马尔伯勒,美国,5. 美国国立卫生研究院,阿尔茨海默病和相关痴呆症中心,国家老龄化研究所,贝塞斯达,美国,6. 居里研究所,PSL 研究大学,ICGex 下一代测序平台,法国巴黎,7. 雅典国立卡波迪斯特里安大学,神经遗传学科,第一神经病学系,Eginition 医院,医学院,希腊雅典 8. 索邦大学,法国国家健康与医学研究院,肌肉学研究所,肌肉学研究中心,法国巴黎
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 3 月 4 日发布。;https://doi.org/10.1101/2023.03.03.531065 doi:bioRxiv 预印本
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2020 年 1 月 2 日发布。;https://doi.org/10.1101/2020.01.02.892844 doi:bioRxiv 预印本
经颅直流刺激(TDC)已显示出在健康和患病的人群中产生神经可塑性。通过使用神经影像提供实时的大脑状态反馈来控制刺激持续时间是一个引起人们极大兴趣的话题。这项研究介绍了闭环调节对额叶皮层中靶向功能网络的可行性。我们假设在刺激治疗期间达到特定状态后,我们无法进一步改善大脑状态。在环形配置中排列的1 Ma的高率TDC在靶向的右额叶皮层的15个健康男性受试者的靶向右额叶皮层上应用10分钟。功能近红外光谱法在刺激期间连续监测血红蛋白发色团。将从过滤的氧气血红蛋白获得的相关基础二进化以形成短期和远程连接的子网。使用基于相关矩阵的连通性百分比的新量化度量分别分析了所有子网络中的连接性。刺激半球中的短距离网络在初始刺激阶段显示出增加的连通性。然而,刺激6分钟后,连接密度的增加显着降低。左半球的短距离网络和远程网络在整个刺激期间逐渐增加。连接百分比度量与网络理论参数显示出相似的响应。连接性百分比和网络理论指标代表刺激治疗过程中的大脑状态。
混合脑 - 计算机界面(BCIS)用于中肢康复后,应促进“更正常”的大脑和肌肉活动的增强。在这里,我们提出了皮质肌肉相干性(CMC)和肌间相干性(IMC)的组合,作为用于康复目的的新型混合BCI的控制特征。在20名健康参与者中收集了来自每侧5个肌肉的多个脑电图(EEG)信号和表面肌电类(EMG)(EMG),并以优势和非优势手进行了纤维伸展(EXT)和抓握(grasp)。CMC和IMC模式的平均值显示出双侧感觉运动区域以及多个肌肉的参与。cmc和imc值用作对每个任务与休息和ext and grasp进行分类的功能。我们认为,CMC和IMC特征的组合允许将两种运动与休息进行分类,而在EXT运动(0.97)的性能(接收器操作特征曲线,AUC下)相对于抓握(0.88)(0.88)。ext v v and grasp的分类也显示出较高的表现(0.99)。总的来说,这些初步发现表明,CMC和IMC的组合可以为最终在混合BCI系统中采用简单的手动运动提供全面的框架,以进行后击球后康复。
高质量的参考基因组和注释对于表征基因组的结构和功能变异以及探索促进现代分子育种的重要性状机制至关重要。随着单分子长读测序技术的开发和不断改进,我们现在可以组装高精度的端粒到端粒 (T2T) 基因组。从头基因组组装时代始于桑格测序,而第一个组装的真核基因组是 1996 年的酿酒酵母 (Dujon, 1996 )。随后,许多其他物种的基因组被组装起来,包括水稻(Goff 等人,2002 年)、玉米(Schnable 等人,2009 年)、拟南芥(拟南芥基因组计划,2000 年)和人类(Venter 等人,2001 年)。下一代测序的后续进展进一步改善了植物基因组组装,但它们仍然在伪分子中表现出数千个缺口,这主要是由于重复序列的普遍性和读取长度的限制(75-300 bp)(Belser 等人,2021 年;陈等人,2023 年)。
1 柏林夏里特医学院儿科肿瘤学和血液学系,柏林 13353,德国; 2 马克斯德尔布吕克中心和柏林夏里特医学院实验与临床研究中心,德国柏林 13125; 3 柏林夏里特医学院,柏林 10117,德国; 4 柏林自由大学,德国柏林 14195; 5 马克斯德尔布吕克分子医学中心,德国柏林 13125; 6 埃尔朗根-纽伦堡弗里德里希亚历山大大学,91054 埃尔朗根,德国; 7 德国癌症联盟 (DKTK),合作伙伴柏林,DKFZ 与柏林夏里特医学院合作,德国柏林 10117; 8 柏林夏里特医学院神经病理学系,柏林自由大学和柏林洪堡大学的企业成员,德国柏林 13353; 9 表观遗传学研究中心,纪念斯隆凯特琳癌症中心,纽约,纽约 10065,美国
摘要:融合基因是癌症治疗的重要靶点和生物标志物,临床需要准确检测融合基因的方法。RNA-seq被广泛用于检测活性融合基因。长读RNA-seq可以对mRNA全长进行测序,有望检测出短读RNA-seq无法检测到的融合基因。然而,长读RNA-seq的碱基调用错误率较高,在与基因组不一致的长读的断点附近可能会出现间隙序列。当出现间隙序列时,现有方法无法识别正确的融合基因或断点。为了解决融合基因检测中的这些挑战,我们引入了一种新算法FUGAREC(带间隙重新对齐和断点聚类的融合检测)。FUGAREC独特地将间隙序列重新对齐与断点聚类结合在一起。这种方法不仅增强了对以前无法检测到的融合基因的检测,而且显著降低了假阳性。我们证明 FUGAREC 在乳腺癌细胞系的模拟数据和测序数据上都具有很高的融合基因检测性能。
MD,美国。4. DeepSeq,诺丁汉,英国。5. 乌普萨拉大学免疫学、遗传学和病理学系生命科学实验室,瑞典乌普萨拉。6. 莱斯大学计算机科学系,美国德克萨斯州休斯顿主街 6100 号。* 通讯作者;贡献相同摘要单细胞 DNA 测序的出现揭示了基因组变异的惊人动态,但未能表征在种系水平上具有深远影响的较小到中等尺寸的变异。在这项工作中,我们利用单细胞长读测序发现了三个大脑中的新动态。这为了解单个细胞基因组的动态提供了关键见解,并进一步强调了转座因子的大脑特定活动。主要单细胞全基因组扩增(WGA)使通常使用短读在低覆盖率 1 下进行的单细胞全基因组测序(scWGS)成为可能,它通常只能检测 Mb 级 CNV,尽管据报道识别了 > 50kbp 的 CNV 2 。无论如何,许多预期的变体(如 Alu 或 LINE 变体)都被遗漏了。这些转座因子 (TE) 家族是最丰富和活跃的转座子,总共占人类基因组的约 27% 3 ,并有助于健康神经元 4 和神经退行性疾病 5–7 的重组。同时,长读测序的出现使得准确检测 Alu 或其他转座子介导的突变成为可能 8 。最近有报道称,在液滴中使用等温多重置换扩增 (MDA) (dMDA) 进行 WGA 后,在 T 细胞上使用长读 scWGS (scWGS-LR) 来组装单个细胞的一个基因组。然而,它的成本很高,而且由于嵌合体和扩增子大小限制,完整性有限 9 。尽管如此,这为进一步探索类似的方法是否能为单细胞的基因组变异提供新的见解开辟了新领域。
由于旁系同源、复杂的单倍型结构或串联重复,人类基因组的很大一部分难以用短读 DNA 测序技术进行检测。长读测序技术(例如 Oxford Nanopore 的 MinION)能够直接测量复杂的位点,而不会引入短读方法固有的许多偏差,尽管它们的通量相对较低。这一限制促使人们最近努力开发无扩增策略来定位和富集感兴趣的位点,以便随后用长读进行测序。在这里,我们介绍了 CaBagE,这是一种高效且有用的靶标富集方法,可用于对大型、结构复杂的靶标进行测序。CaBagE 方法利用 Cas9 与其 DNA 靶标的稳定结合来保护所需片段不被核酸外切酶消化。然后使用 Oxford Nanopore 的 MinION 长读测序技术对富集的 DNA 片段进行测序。使用健康供体 DNA 对长度为 4-20kb 的五个基因组靶标进行测试时,使用 CaBagE 进行富集可获得 116X 覆盖率(范围为 39-416)的靶标位点中位数。四种癌症基因靶标在单个反应中富集并在单个 MinION 流动槽中进行多路复用。我们进一步证明了 CaBagE 在两名具有 C9orf72 短串联重复扩增的 ALS 患者中的效用,以产生与每个个体的重复引发 PCR 得出的基因型相称的基因型估计值。使用 CaBagE,可以在测序之前对给定样本中的靶标 DNA 进行物理富集。此功能允许跨测序平台进行适应性,并可能用作测序以外应用的富集策略。CaBagE 是一种快速富集方法,可以阐明人类疾病背后的“隐藏基因组”区域。