clc-2是一种电压门控通道,在哺乳动物组织中广泛表达。在中枢神经系统中,神经元和神经胶质中的CLC-2呈现。研究中枢神经系统中该渠道如何为正常和病理生理功能提供贡献,这引发了尚未解决的问题,部分原因是缺乏适应CLC-2活性的精确药理工具。在此,我们描述了AK-42的发育和选择,这是一种具有纳摩尔效力的Clc-2的特定小分子抑制剂(IC 50 = 17±1 nm)。AK-42在CLC-1(最接近的CLC-2 HOMolog)上显示出未经表述的选择性(> 1,000倍),并且对在脑组织中表达的61个常见通道,受体和转运蛋白的面板没有脱靶参与。通过诱变和动力学研究验证的计算对接表明AK-42与通道孔上方的细胞外前庭结合。在小鼠CA1海马锥体神经元的电生理记录中,AK-42急性和可逆地抑制Clc-2电流;对从CLC-2基因敲除小鼠采取的脑切片的影响没有影响。这些恢复将AK-42建立为研究CLC-2神经生理学的强大工具。
外显子和靶向测序的最新进展显着改善了癫痫病的病因诊断,揭示了持续数量的癫痫相关致病基因。因此,癫痫的诊断和治疗变得更容易获得,更可追溯。电压门控钾通道(KV)调节神经元系统中的电兴奋性。突变的KV通道已与癫痫有关,如在使用基因敲除小鼠模型的研究中所证明的那样。通过不同的机制,KV通道的增益和功能丧失导致具有相似表型的癫痫病,从而为癫痫的诊断和治疗带来了新的挑战。对遗传癫痫的研究正在迅速发展,几名候选药物靶向突变的基因或出现的通道。本文简要概述了与电压门控钾离子通道功能障碍相关的癫痫的症状和发病机理,并突出了治疗方法最近的进展。在这里,我们回顾了近年来与癫痫相关的基因突变的病例报告,并总结了KV基因的比例。我们的重点是针对与癫痫有关的特定电压门控通道基因的精确处理进展,包括KCNA1,KCNA2,KCNB1,KCNB1,KCNC1,KCND2,KCND2,KCNQ2,KCNQ2,KCNQ3,KCNQ3,KCNH1,KCNH1和KCNH5。
摘要:CDKL5(Cyclin依赖性激酶样5)缺陷障碍(CDD)是一种严重的神经性疾病,主要影响女孩,这些疾病是X-C-连接CDKL5基因突变的杂合子。CDKL5基因中的突变导致缺乏CDKL5蛋白表达或功能,并引起许多临床特征,包括早发作性癫痫发作,明显的低位症,自闭症特征,胃肠道问题和严重的神经发育障碍。CDD的小鼠模型概括了CDD症状的几个方面,包括认知障碍,运动量和类似自闭症的特征,并且对于剖析CDKL5在大脑发育和功能中的作用非常有用。但是,我们目前对CDKL5功能在其他器官/组织中的功能的了解仍然非常有限,从而减少了广谱干预的可能性。在这里,第一次,我们报告了杂合CDKL5 +/ - 雌性小鼠中心脏功能/结构改变的存在。我们发现CDKL5 +/ - 小鼠中延长的QT间隔(校正心率,QTC)和心率增加。这些变化与副交感神经对心脏以及SCN5A和HCN4电压门控通道的表达相关。有趣的是,CDKL5 +/ - 心脏显示出增加的纤维化,间隙连接组织的改变,连接蛋白43表达,线粒体功能障碍和ROS产生增加。一起,这些发现不仅有助于我们对CDKL5在心脏结构/功能中的作用的理解,而且还记录了一种新型的临床前表型,以进行未来的治疗研究。
寄生线虫对人类和动物的健康构成了重大威胁,并在农业部门造成经济损失。使用驱虫药物(例如伊维菌素(IVM))来控制这些寄生虫的使用导致了广泛的耐药性。识别寄生线虫中抗药性的遗传标记可能具有挑战性,但是秀丽隐杆线虫的自由生活的Nema-Tode Caenorhabditis提供了合适的模型。在这项研究中,我们旨在分析成人c的转录组。秀丽隐杆线虫蠕虫暴露于驱虫药伊维菌素(IVM)的N2菌株,并将其与抗性菌株DA1316和最近确定的杀伤蛋白定量性状基因座(QTL)进行比较。 RNA并在Illumina NovaseQ6000平台上对其进行了排序。使用内部管道确定差异表达的基因(DEG)。将DEG与先前关于IVM抗性c的微阵列研究的基因进行了比较。秀丽隐杆线虫和Abamectin-QTL。我们的结果显示,N2 c中不同基因家族的615摄氏度(183个上调和432个下调基因)。秀丽隐杆线伤。31与DA1316菌株的IVM成年蠕虫的基因重叠。我们确定了19个基因,包括叶酸转运蛋白(Folt-2)和跨膜转运蛋白(T22F3。11),在N2和DA1316菌株中表现出相反的表达,被认为是潜在的候选物。此外,我们编制了进一步研究的潜在候选列表,包括T型钙通道(CCA-1),氯化钾共转运蛋白(KCC-2),以及其他映射到Abamectin-QTL的基因,例如谷氨酸门控通道(GLC-1)。
缩写:6-OHDA,6-羟基果胺; ASD,自闭症谱系障碍; BTBR,Black和Tan Brachyury; Cacna1c,钙电源门控通道亚基α1c; CB1-KO,大麻素受体1敲除; CB1R,大麻素类型1受体; CNN,卷积神经网络; CNTNAP2,接触蛋白相关的蛋白质样2; CPP,条件的地方偏好; D1和D2样受体,多巴胺1和2喜欢受体; DB,分贝; DRT,多巴胺替代疗法; ECS,内源性大麻素系统; FM,频率调制; FMR1,脆弱的X精神迟缓综合征1; FMRP,脆弱的X智障蛋白; FXS,脆弱的X综合征; hie,低氧缺血性脑病; HS,小时; IGF-2,胰岛素 - 喜欢生长因子2; KHz,Kilohertz; ko,淘汰; L-DOPA,L-3,4-二羟基苯胺; LPS,脂多糖; MCAO,中大脑中动脉阻塞; MIA,母体免疫激活; MLX,Meloxicam; MP,多层感知者; mper1,鼠标周期1; MS,毫秒; mupet,小鼠超声剖面提取; namb,Ambiguus核; NDD,神经发育障碍; NF-κB,核因子kappa b; NLGN,神经素; nts,核科solitarius; P2X4R,嘌呤能P2X受体4; PAG,灰灰色; PD,帕金森氏病; PND,产后日; PTSD,创伤后应激障碍; RF,随机森林; SVM,支持向量机; Ube3a,泛素蛋白连接酶E3A; USV,超声波发声; Waaves,Wav-File自动化的声音环境分析。 wt,野生型。
缩写:6-OHDA,6-羟基果胺; ASD,自闭症谱系障碍; BTBR,Black和Tan Brachyury; Cacna1c,钙电源门控通道亚基α1c; CB1-KO,大麻素受体1敲除; CB1R,大麻素类型1受体; CNN,卷积神经网络; CNTNAP2,接触蛋白相关的蛋白质样2; CPP,条件的地方偏好; D1和D2样受体,多巴胺1和2喜欢受体; DB,分贝; DRT,多巴胺替代疗法; ECS,内源性大麻素系统; FM,频率调制; FMR1,脆弱的X精神迟缓综合征1; FMRP,脆弱的X智障蛋白; FXS,脆弱的X综合征; hie,低氧缺血性脑病; HS,小时; IGF-2,胰岛素 - 喜欢生长因子2; KHz,Kilohertz; ko,淘汰; L-DOPA,L-3,4-二羟基苯胺; LPS,脂多糖; MCAO,中大脑中动脉阻塞; MIA,母体免疫激活; MLX,Meloxicam; MP,多层感知者; mper1,鼠标周期1; MS,毫秒; mupet,小鼠超声剖面提取; namb,Ambiguus核; NDD,神经发育障碍; NF-κB,核因子kappa b; NLGN,神经素; nts,核科solitarius; P2X4R,嘌呤能P2X受体4; PAG,灰灰色; PD,帕金森氏病; PND,产后日; PTSD,创伤后应激障碍; RF,随机森林; SVM,支持向量机; Ube3a,泛素蛋白连接酶E3A; USV,超声波发声; Waaves,Wav-File自动化的声音环境分析。 wt,野生型。
有效的蜂窝通信对于大脑调节肌肉收缩,记忆形成和回忆,决策和任务执行等多种功能至关重要。通过电气和化学信使(包括电压门控通道和神经递质)的快速信号传导来促进这种通信。这些使者通过传播动作电位和中介突触传播来引起广泛的反应。钙涌入和外排对于释放神经递质和调节突触传播至关重要。与氧化磷酸化有关的线粒体和能量产生过程也与内质网相互作用,以存储和调节细胞质钙水平。不同细胞类型中线粒体的数量,形态和分布根据能量需求而变化。线粒体损伤会导致过量的活性氧(ROS)产生。mitophagy是一个选择性过程,它通过自噬体 - 散糖体融合靶向并降解损坏的线粒体。线粒体中的缺陷会导致ROS和细胞死亡的积累。许多研究试图表征神经退行性疾病中线粒体功能障碍与钙失调之间的关系,例如阿尔茨海默氏病,帕金森氏病,亨廷顿氏病,黑肿瘤疾病,肌萎缩性侧面硬化症,脊髓灰质球脑性脑脑性无动脉症,染色。减少线粒体损伤和积累的介入策略可以作为治疗目标,但是需要进一步的研究来揭示这一潜力。本综述提供了与线粒体在各种神经元细胞中有关的钙信号传导的概述。它严格检查了最新发现,探讨了线粒体功能障碍可能在多种神经退行性疾病和衰老中起的潜在作用。此外,评论还确定了知识中现有的差距,以指导未来研究的方向。
背景:通过表观基因组关联研究 (EWAS) 确定的吸烟相关 DNA 甲基化水平通常归因于吸烟反应机制,但共同的遗传易感性对吸烟和 DNA 甲基化水平的影响通常没有被考虑到。方法:我们利用一种强大的家庭内设计,即不一致的同卵双胞胎设计,来研究血细胞 DNA 甲基化对吸烟的反应性以及戒烟后甲基化模式的可逆性。Illumina HumanMethylation450 BeadChip 数据可用于 769 对同卵双胞胎(平均年龄 = 36 岁,范围 = 18-78 岁,70% 为女性),包括目前或以前吸烟情况不一致或一致的双胞胎。结果:在目前吸烟情况不一致的双胞胎中,在目前吸烟的双胞胎和从不吸烟的基因同卵双胞胎之间发现了 13 个差异甲基化 CpG。排名靠前的位点包括 CACNA1D 和 GNG12 中的多个 CpG,它们分别编码钙电压门控通道和 G 蛋白的亚基。这些蛋白质与烟碱乙酰胆碱受体相互作用,表明这些 CpG 上的甲基化水平可能对尼古丁暴露有反应。所有 13 个 CpG 均曾与无关个体的吸烟有关,而以前吸烟情况不一致的同卵双胞胎的数据表明,戒烟后甲基化模式在很大程度上是可逆的。我们进一步表明,对于目前都是吸烟者但吸烟数量不同的同卵双胞胎,其吸烟水平暴露的差异反映在他们的 DNA 甲基化谱中。结论:总之,通过分析同卵双胞胎的数据,我们有力地证明了人类血细胞中的 DNA 甲基化水平对吸烟有反应。资金:我们感谢美国国家药物滥用研究所 DA049867 拨款、荷兰科学研究组织 (NWO):生物银行和生物分子研究基础设施 (BBMRI-NL, NWO 184.033.111) 和 BBRMI-NL 资助的 BIOS 联盟 (NWO 184.021.007)、NWO 大型基础设施 X-Omics (184.034.019)、行为遗传和遗传流行病学研究的基因型/表型数据库 (ZonMw Middelgroot 911-09-032);荷兰双胞胎登记库:研究基因组和环境之间的相互作用 (NWO-Groot 480-15-001/674);美国苏福尔斯 Avera 研究所和美国国立卫生研究院(NIH R01 HD042157-01A1、MH081802、Grand Opportunity 拨款 1RC2 MH089951 和
图1 Polyq疾病蛋白的αFOLD结构。 (A) Predicted AlphaFold protein model of full-length ATXN1 (Human; AF-P54253), (B) ATXN2 (Human; AF-Q99700), (C) ATXN3 (Human; AF-P54252), (D) ATXN7 (Human; AF-O15265), (E) CACNA1A (Human; AF-O00555), (F) TBP(人类; AF-P20226),(G)AR(人类; AF-P10275)和(H)ATN1(Human; AF-P54259)。 (i)预测氨基酸残基1至413的Alphafold蛋白模型HTT(HTTQ21(1-414)),其中包含21个聚谷氨酰胺。 预测的HTTQ21(1-414)AlphaFold模型叠加在灰色(蛋白质数据库ID 6x9O,2.60Å分辨率[99]中显示的Cryo-EM确定的HTT-HAP40蛋白结构[99],其中未在Cryo-Em结构中确定PolyQ区域。图1 Polyq疾病蛋白的αFOLD结构。(A) Predicted AlphaFold protein model of full-length ATXN1 (Human; AF-P54253), (B) ATXN2 (Human; AF-Q99700), (C) ATXN3 (Human; AF-P54252), (D) ATXN7 (Human; AF-O15265), (E) CACNA1A (Human; AF-O00555), (F) TBP(人类; AF-P20226),(G)AR(人类; AF-P10275)和(H)ATN1(Human; AF-P54259)。(i)预测氨基酸残基1至413的Alphafold蛋白模型HTT(HTTQ21(1-414)),其中包含21个聚谷氨酰胺。预测的HTTQ21(1-414)AlphaFold模型叠加在灰色(蛋白质数据库ID 6x9O,2.60Å分辨率[99]中显示的Cryo-EM确定的HTT-HAP40蛋白结构[99],其中未在Cryo-Em结构中确定PolyQ区域。HTTQ21(1-414)模型高度对齐冷冻结构。由黑色矩形构建的残基代表野生型Polyq区域。比例尺表示源自AlphaFold预测的PLDDT值,并表示每日置信度度量[97]:PLDDT> 90,高精度; 90> plddt> 70建模良好; 70> PLDDT> 50低置信度; PLDDT <50差精度。ar,雄激素受体; ATN1,Atrophin 1; atxn1,ataxin 1; atxn2,ataxin 2; atxn3,ataxin 3; atxn7,ataxin 7; Cacna1a,钙电源门控通道亚基Alpha1 A(Cav2.1);冷冻电子,冷冻电子显微镜; HTT,亨廷顿; PLDDT,每个保留模型置信度评分; Polyq,聚谷氨酰胺; TBP,TATA结合蛋白。